Goto

Collaborating Authors

 Hertzmann, Aaron


Data Attribution for Text-to-Image Models by Unlearning Synthesized Images

arXiv.org Artificial Intelligence

The goal of data attribution for text-to-image models is to identify the training images that most influence the generation of a new image. We can define "influence" by saying that, for a given output, if a model is retrained from scratch without that output's most influential images, the model should then fail to generate that output image. Unfortunately, directly searching for these influential images is computationally infeasible, since it would require repeatedly retraining from scratch. We propose a new approach that efficiently identifies highly-influential images. Specifically, we simulate unlearning the synthesized image, proposing a method to increase the training loss on the output image, without catastrophic forgetting of other, unrelated concepts. Then, we find training images that are forgotten by proxy, identifying ones with significant loss deviations after the unlearning process, and label these as influential. We evaluate our method with a computationally intensive but "gold-standard" retraining from scratch and demonstrate our method's advantages over previous methods.


Segmentation-Based Parametric Painting

arXiv.org Artificial Intelligence

We introduce a novel image-to-painting method that facilitates the creation of large-scale, high-fidelity paintings with human-like quality and stylistic variation. To process large images and gain control over the painting process, we introduce a segmentation-based painting process and a dynamic attention map approach inspired by human painting strategies, allowing optimization of brush strokes to proceed in batches over different image regions, thereby capturing both large-scale structure and fine details, while also allowing stylistic control over detail. Our optimized batch processing and patch-based loss framework enable efficient handling of large canvases, ensuring our painted outputs are both aesthetically compelling and functionally superior as compared to previous methods, as confirmed by rigorous evaluations. Code available at: https://github.com/manuelladron/semantic\_based\_painting.git


Art and the science of generative AI: A deeper dive

arXiv.org Artificial Intelligence

A new class of tools, colloquially called generative AI, can produce high-quality artistic media for visual arts, concept art, music, fiction, literature, video, and animation. The generative capabilities of these tools are likely to fundamentally alter the creative processes by which creators formulate ideas and put them into production. As creativity is reimagined, so too may be many sectors of society. Understanding the impact of generative AI - and making policy decisions around it - requires new interdisciplinary scientific inquiry into culture, economics, law, algorithms, and the interaction of technology and creativity. We argue that generative AI is not the harbinger of art's demise, but rather is a new medium with its own distinct affordances. In this vein, we consider the impacts of this new medium on creators across four themes: aesthetics and culture, legal questions of ownership and credit, the future of creative work, and impacts on the contemporary media ecosystem. Across these themes, we highlight key research questions and directions to inform policy and beneficial uses of the technology.


Aesthetics of Neural Network Art

arXiv.org Artificial Intelligence

This paper proposes a way to understand neural network artworks as juxtapositions of natural image cues. It is hypothesized that images with unusual combinations of realistic visual cues are interesting, and, neural models trained to model natural images are well-suited to creating interesting images. Art using neural models produces new images similar to those of natural images, but with weird and intriguing variations. This analysis is applied to neural art based on Generative Adversarial Networks, image stylization, Deep Dreams, and Perception Engines.


Can Computers Create Art?

arXiv.org Artificial Intelligence

This essay discusses whether computers, using Artificial Intelligence (AI), could create art. First, the history of technologies that automated aspects of art is surveyed, including photography and animation. In each case, there were initial fears and denial of the technology, followed by a blossoming of new creative and professional opportunities for artists. The current hype and reality of Artificial Intelligence (AI) tools for art making is then discussed, together with predictions about how AI tools will be used. It is then speculated about whether it could ever happen that AI systems could be credited with authorship of artwork. It is theorized that art is something created by social agents, and so computers cannot be credited with authorship of art in our current understanding. A few ways that this could change are also hypothesized.


Efficient Optimization for Sparse Gaussian Process Regression

Neural Information Processing Systems

We propose an efficient discrete optimization algorithm for selecting a subset of training data to induce sparsity for Gaussian process regression. The algorithm estimates this inducing set and the hyperparameters using a single objective, either the marginal likelihood or a variational free energy. The space and time complexity are linear in the training set size, and the algorithm can be applied to large regression problems on discrete or continuous domains. Empirical evaluation shows state-of-art performance in the discrete case and competitive results in the continuous case.




Learning Non-Rigid 3D Shape from 2D Motion

Neural Information Processing Systems

This paper presents an algorithm for learning the time-varying shape of a nonrigid 3D object from uncalibrated 2D tracking data. We model shape motion as a rigid component (rotation and translation) combined with a nonrigid deformation. Reconstruction is ill-posed if arbitrary deformations are allowed. We constrain the problem by assuming that the object shape at each time instant is drawn from a Gaussian distribution. Based on this assumption, the algorithm simultaneously estimates 3D shape and motion for each time frame, learns the parameters of the Gaussian, and robustly fills-in missing data points. We then extend the algorithm to model temporal smoothness in object shape, thus allowing it to handle severe cases of missing data.


Learning Non-Rigid 3D Shape from 2D Motion

Neural Information Processing Systems

This paper presents an algorithm for learning the time-varying shape of a nonrigid 3D object from uncalibrated 2D tracking data. We model shape motion as a rigid component (rotation and translation) combined with a nonrigid deformation. Reconstruction is ill-posed if arbitrary deformations areallowed. We constrain the problem by assuming that the object shape at each time instant is drawn from a Gaussian distribution. Based on this assumption, the algorithm simultaneously estimates 3D shape and motion for each time frame, learns the parameters of the Gaussian, and robustly fills-in missing data points. We then extend the algorithm to model temporal smoothness in object shape, thus allowing it to handle severe cases of missing data.