Goto

Collaborating Authors

 Hershey, John


Generative Data Augmentation Challenge: Zero-Shot Speech Synthesis for Personalized Speech Enhancement

arXiv.org Artificial Intelligence

This paper presents a new challenge that calls for zero-shot text-to-speech (TTS) systems to augment speech data for the downstream task, personalized speech enhancement (PSE), as part of the Generative Data Augmentation workshop at ICASSP 2025. Collecting high-quality personalized data is challenging due to privacy concerns and technical difficulties in recording audio from the test scene. To address these issues, synthetic data generation using generative models has gained significant attention. In this challenge, participants are tasked first with building zero-shot TTS systems to augment personalized data. Subsequently, PSE systems are asked to be trained with this augmented personalized dataset. Through this challenge, we aim to investigate how the quality of augmented data generated by zero-shot TTS models affects PSE model performance. We also provide baseline experiments using open-source zero-shot TTS models to encourage participation and benchmark advancements. Our baseline code implementation and checkpoints are available online.


VoiceFilter: Targeted Voice Separation by Speaker-Conditioned Spectrogram Masking

arXiv.org Machine Learning

ABSTRACT In this paper, we present a novel system that separates the voice of a target speaker from multi-speaker signals, by making use of a reference signal from the target speaker. We achieve this by training two separate neural networks: (1) A speaker recognition network that produces speaker-discriminative embeddings; (2) A spectrogram masking network that takes both noisy spectrogram and speaker embedding as input, and produces a mask. Our system significantly reduces the speech recognition WER on multi-speaker signals, with minimal WER degradation on single-speaker signals. Index Terms-- Source separation, speaker recognition, spectrogram masking, speech recognition 1. INTRODUCTION Recent advances in speech recognition have led to performance improvement in challenging scenarios such as noisy and far-field conditions. However, speech recognition systems still perform poorly when the speaker of interest is recorded in crowded environments, i.e., with interfering speakers in the foreground or background. One way to deal with this issue is to first apply a speech separation system on the noisy audio in order to separate the voices from different speakers.


Full-Capacity Unitary Recurrent Neural Networks

Neural Information Processing Systems

Recurrent neural networks are powerful models for processing sequential data, but they are generally plagued by vanishing and exploding gradient problems. Unitary recurrent neural networks (uRNNs), which use unitary recurrence matrices, have recently been proposed as a means to avoid these issues. However, in previous experiments, the recurrence matrices were restricted to be a product of parameterized unitary matrices, and an open question remains: when does such a parameterization fail to represent all unitary matrices, and how does this restricted representational capacity limit what can be learned? To address this question, we propose full-capacity uRNNs that optimize their recurrence matrix over all unitary matrices, leading to significantly improved performance over uRNNs that use a restricted-capacity recurrence matrix. Our contribution consists of two main components. First, we provide a theoretical argument to determine if a unitary parameterization has restricted capacity. Using this argument, we show that a recently proposed unitary parameterization has restricted capacity for hidden state dimension greater than 7. Second,we show how a complete, full-capacity unitary recurrence matrix can be optimized over the differentiable manifold of unitary matrices. The resulting multiplicative gradient step is very simple and does not require gradient clipping or learning rate adaptation. We confirm the utility of our claims by empirically evaluating our new full-capacity uRNNs on both synthetic and natural data, achieving superior performance compared to both LSTMs and the original restricted-capacity uRNNs.