Herrmann, Matthieu
An Approach to Multiple Comparison Benchmark Evaluations that is Stable Under Manipulation of the Comparate Set
Ismail-Fawaz, Ali, Dempster, Angus, Tan, Chang Wei, Herrmann, Matthieu, Miller, Lynn, Schmidt, Daniel F., Berretti, Stefano, Weber, Jonathan, Devanne, Maxime, Forestier, Germain, Webb, Geoffrey I.
The measurement of progress using benchmarks evaluations is ubiquitous in computer science and machine learning. However, common approaches to analyzing and presenting the results of benchmark comparisons of multiple algorithms over multiple datasets, such as the critical difference diagram introduced by Dem\v{s}ar (2006), have important shortcomings and, we show, are open to both inadvertent and intentional manipulation. To address these issues, we propose a new approach to presenting the results of benchmark comparisons, the Multiple Comparison Matrix (MCM), that prioritizes pairwise comparisons and precludes the means of manipulating experimental results in existing approaches. MCM can be used to show the results of an all-pairs comparison, or to show the results of a comparison between one or more selected algorithms and the state of the art. MCM is implemented in Python and is publicly available.
Proximity Forest 2.0: A new effective and scalable similarity-based classifier for time series
Herrmann, Matthieu, Tan, Chang Wei, Salehi, Mahsa, Webb, Geoffrey I.
Time series classification (TSC) is a challenging task due to the diversity of types of feature that may be relevant for different classification tasks, including trends, variance, frequency, magnitude, and various patterns. To address this challenge, several alternative classes of approach have been developed, including similarity-based, features and intervals, shapelets, dictionary, kernel, neural network, and hybrid approaches. While kernel, neural network, and hybrid approaches perform well overall, some specialized approaches are better suited for specific tasks. In this paper, we propose a new similarity-based classifier, Proximity Forest version 2.0 (PF 2.0), which outperforms previous state-of-the-art similarity-based classifiers across the UCR benchmark and outperforms state-of-the-art kernel, neural network, and hybrid methods on specific datasets in the benchmark that are best addressed by similarity-base methods. PF 2.0 incorporates three recent advances in time series similarity measures -- (1) computationally efficient early abandoning and pruning to speedup elastic similarity computations; (2) a new elastic similarity measure, Amerced Dynamic Time Warping (ADTW); and (3) cost function tuning. It rationalizes the set of similarity measures employed, reducing the eight base measures of the original PF to three and using the first derivative transform with all similarity measures, rather than a limited subset. We have implemented both PF 1.0 and PF 2.0 in a single C++ framework, making the PF framework more efficient.
Parameterizing the cost function of Dynamic Time Warping with application to time series classification
Herrmann, Matthieu, Tan, Chang Wei, Webb, Geoffrey I.
Dynamic Time Warping (DTW) is a popular time series distance measure that aligns the points in two series with one another. These alignments support warping of the time dimension to allow for processes that unfold at differing rates. The distance is the minimum sum of costs of the resulting alignments over any allowable warping of the time dimension. The cost of an alignment of two points is a function of the difference in the values of those points. The original cost function was the absolute value of this difference. Other cost functions have been proposed. A popular alternative is the square of the difference. However, to our knowledge, this is the first investigation of both the relative impacts of using different cost functions and the potential to tune cost functions to different tasks. We do so in this paper by using a tunable cost function {\lambda}{\gamma} with parameter {\gamma}. We show that higher values of {\gamma} place greater weight on larger pairwise differences, while lower values place greater weight on smaller pairwise differences. We demonstrate that training {\gamma} significantly improves the accuracy of both the DTW nearest neighbor and Proximity Forest classifiers.