Goto

Collaborating Authors

 Herrera-Viedma, Enrique


Responsible Artificial Intelligence Systems: A Roadmap to Society's Trust through Trustworthy AI, Auditability, Accountability, and Governance

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has matured as a technology, necessitating the development of responsibility frameworks that are fair, inclusive, trustworthy, safe and secure, transparent, and accountable. By establishing such frameworks, we can harness the full potential of AI while mitigating its risks, particularly in high-risk scenarios. This requires the design of responsible AI systems based on trustworthy AI technologies and ethical principles, with the aim of ensuring auditability and accountability throughout their design, development, and deployment, adhering to domain-specific regulations and standards. This paper explores the concept of a responsible AI system from a holistic perspective, which encompasses four key dimensions: 1) regulatory context; 2) trustworthy AI technology along with standardization and assessments; 3) auditability and accountability; and 4) AI governance. The aim of this paper is double. First, we analyze and understand these four dimensions and their interconnections in the form of an analysis and overview. Second, the final goal of the paper is to propose a roadmap in the design of responsible AI systems, ensuring that they can gain society's trust. To achieve this trustworthiness, this paper also fosters interdisciplinary discussions on the ethical, legal, social, economic, and cultural aspects of AI from a global governance perspective. Last but not least, we also reflect on the current state and those aspects that need to be developed in the near future, as ten lessons learned.


Connecting the Dots in Trustworthy Artificial Intelligence: From AI Principles, Ethics, and Key Requirements to Responsible AI Systems and Regulation

arXiv.org Artificial Intelligence

Trustworthy Artificial Intelligence (AI) is based on seven technical requirements sustained over three main pillars that should be met throughout the system's entire life cycle: it should be (1) lawful, (2) ethical, and (3) robust, both from a technical and a social perspective. However, attaining truly trustworthy AI concerns a wider vision that comprises the trustworthiness of all processes and actors that are part of the system's life cycle, and considers previous aspects from different lenses. A more holistic vision contemplates four essential axes: the global principles for ethical use and development of AI-based systems, a philosophical take on AI ethics, a risk-based approach to AI regulation, and the mentioned pillars and requirements. The seven requirements (human agency and oversight; robustness and safety; privacy and data governance; transparency; diversity, non-discrimination and fairness; societal and environmental wellbeing; and accountability) are analyzed from a triple perspective: What each requirement for trustworthy AI is, Why it is needed, and How each requirement can be implemented in practice. On the other hand, a practical approach to implement trustworthy AI systems allows defining the concept of responsibility of AI-based systems facing the law, through a given auditing process. Therefore, a responsible AI system is the resulting notion we introduce in this work, and a concept of utmost necessity that can be realized through auditing processes, subject to the challenges posed by the use of regulatory sandboxes. Our multidisciplinary vision of trustworthy AI culminates in a debate on the diverging views published lately about the future of AI. Our reflections in this matter conclude that regulation is a key for reaching a consensus among these views, and that trustworthy and responsible AI systems will be crucial for the present and future of our society.


A Survey on Federated Learning and its Applications for Accelerating Industrial Internet of Things

arXiv.org Artificial Intelligence

Federated learning (FL) brings collaborative intelligence into industries without centralized training data to accelerate the process of Industry 4.0 on the edge computing level. FL solves the dilemma in which enterprises wish to make the use of data intelligence with security concerns. To accelerate industrial Internet of things with the further leverage of FL, existing achievements on FL are developed from three aspects: 1) define terminologies and elaborate a general framework of FL for accommodating various scenarios; 2) discuss the state-of-the-art of FL on fundamental researches including data partitioning, privacy preservation, model optimization, local model transportation, personalization, motivation mechanism, platform & tools, and benchmark; 3) discuss the impacts of FL from the economic perspective. To attract more attention from industrial academia and practice, a FL-transformed manufacturing paradigm is presented, and future research directions of FL are given and possible immediate applications in Industry 4.0 domain are also proposed.


Sentiment Analysis based Multi-person Multi-criteria Decision Making Methodology: Using Natural Language Processing and Deep Learning for Decision Aid

arXiv.org Artificial Intelligence

Over time, different models have emerged to help us to solve DM problems. In particular, multi-person multi-criteria decision making (MpMcDM) models consider the evaluations of multiple experts to solve a decision situation analyzing all possible solution alternatives according to several criteria [45]. Computational DM process, as the human DM one, requires of useful, complete and insightful information for making the most adequate decision according to the input information. The input of DM models is usually a set of evaluations from the experts. They wish to express their evaluations in natural language, but raw text is not directly processed by DM models. Accordingly, several approaches are followed for asking and elaborating a computational representation of the evaluations, namely: (1) using a numerical representation of the evaluations [35] and (2) using a predefined set of linguistic terms [13]. These approaches for asking evaluations constrain the evaluative expressiveness of the experts, because they have to adapt their evaluation to the numerical or linguistic evaluation alternatives. We claim that experts in a DM problem have to express their evaluations in natural language, and the DM model has to be able to process and computationally represent them. Natural language processing (NLP) is the artificial intelligence area that combines linguistic and computational language backgrounds for understanding and generating human language [16, 28].


Reciprocal Recommender Systems: Analysis of State-of-Art Literature, Challenges and Opportunities on Social Recommendation

arXiv.org Artificial Intelligence

Many social services including online dating, social media, recruitment and online learning, largely rely on \matching people with the right people". The success of these services and the user experience with them often depends on their ability to match users. Reciprocal Recommender Systems (RRS) arose to facilitate this process by identifying users who are a potential match for each other, based on information provided by them. These systems are inherently more complex than user-item recommendation approaches and unidirectional user recommendation services, since they need to take into account both users' preferences towards each other in the recommendation process. This entails not only predicting accurate preference estimates as classical recommenders do, but also defining adequate fusion processes for aggregating user-to-user preferential information. The latter is a crucial and distinctive, yet barely investigated aspect in RRS research. This paper presents a snapshot analysis of the extant literature to summarize the state-of-the-art RRS research to date, focusing on the fundamental features that differentiate RRSs from other classes of recommender systems. Following this, we discuss the challenges and opportunities for future research on RRSs, with special focus on (i) fusion strategies to account for reciprocity and (ii) emerging application domains related to social recommendation.