Goto

Collaborating Authors

 Henrion, Max



How Much More Probable is "Much More Probable"? Verbal Expressions for Probability Updates

arXiv.org Artificial Intelligence

Bayesian inference systems should be able to explain their reasoning to users, translating from numerical to natural language. Previous empirical work has investigated the correspondence between absolute probabilities and linguistic phrases. This study extends that work to the correspondence between changes in probabilities (updates) and relative probability phrases, such as "much more likely" or "a little less likely." Subjects selected such phrases to best describe numerical probability updates. We examined three hypotheses about the correspondence, and found the most descriptively accurate of these three to be that each such phrase corresponds to a fixed difference in probability (rather than fixed ratio of probabilities or of odds). The empirically derived phrase selection function uses eight phrases and achieved a 72% accuracy in correspondence with the subjects' actual usage.


A Framework for Comparing Uncertain Inference Systems to Probability

arXiv.org Artificial Intelligence

Several different uncertain inference systems (UISs) have been developed for representing uncertainty in rule-based expert systems. Some of these, such as Mycin's Certainty Factors, Prospector, and Bayes' Networks were designed as approximations to probability, and others, such as Fuzzy Set Theory and DempsterShafer Belief Functions were not. How different are these UISs in practice, and does it matter which you use? When combining and propagating uncertain information, each UIS must, at least by implication, make certain assumptions about correlations not explicily specified. The maximum entropy principle with minimum cross-entropy updating, provides a way of making assumptions about the missing specification that minimizes the additional information assumed, and thus offers a standard against which the other UISs can be compared. We describe a framework for the experimental comparison of the performance of different UISs, and provide some illustrative results.


Practical Issues in Constructing a Bayes' Belief Network

arXiv.org Artificial Intelligence

Bayes belief networks and influence diagrams are tools for constructing coherent probabilistic representations of uncertain knowledge. The process of constructing such a network to represent an expert's knowledge is used to illustrate a variety of techniques which can facilitate the process of structuring and quantifying uncertain relationships. These include some generalizations of the "noisy OR gate" concept. Sensitivity analysis of generic elements of Bayes' networks provides insight into when rough probability assessments are sufficient and when greater precision may be important.


Qualitative Propagation and Scenario-based Explanation of Probabilistic Reasoning

arXiv.org Artificial Intelligence

Comprehensible explanations of probabilistic reasoning are a prerequisite for wider acceptance of Bayesian methods in expert systems and decision support systems. A study of human reasoning under uncertainty suggests two different strategies for explaining probabilistic reasoning: The first, qualitative belief propagation, traces the qualitative effect of evidence through a belief network from one variable to the next. This propagation algorithm is an alternative to the graph reduction algorithms of Wellman (1988) for inference in qualitative probabilistic networks. It is based on a qualitative analysis of intercausal reasoning, which is a generalization of Pearl's "explaining away", and an alternative to Wellman's definition of qualitative synergy. The other, Scenario-based reasoning, involves the generation of alternative causal "stories" accounting for the evidence. Comparing a few of the most probable scenarios provides an approximate way to explain the results of probabilistic reasoning. Both schemes employ causal as well as probabilistic knowledge. Probabilities may be presented as phrases and/or numbers. Users can control the style, abstraction and completeness of explanations.


Search-based Methods to Bound Diagnostic Probabilities in Very Large Belief Nets

arXiv.org Artificial Intelligence

Since exact probabilistic inference is intractable in general for large multiply connected belief nets, approximate methods are required. A promising approach is to use heuristic search among hypotheses (instantiations of the network) to find the most probable ones, as in the TopN algorithm. Search is based on the relative probabilities of hypotheses which are efficient to compute. Given upper and lower bounds on the relative probability of partial hypotheses, it is possible to obtain bounds on the absolute probabilities of hypotheses. Best-first search aimed at reducing the maximum error progressively narrows the bounds as more hypotheses are examined. Here, qualitative probabilistic analysis is employed to obtain bounds on the relative probability of partial hypotheses for the BN20 class of networks networks and a generalization replacing the noisy OR assumption by negative synergy. The approach is illustrated by application to a very large belief network, QMR-BN, which is a reformulation of the Internist-1 system for diagnosis in internal medicine.


Intercausal Reasoning with Uninstantiated Ancestor Nodes

arXiv.org Artificial Intelligence

Intercausal reasoning is a common inference pattern involving probabilistic dependence of causes of an observed common effect. The sign of this dependence is captured by a qualitative property called product synergy. The current definition of product synergy is insufficient for intercausal reasoning where there are additional uninstantiated causes of the common effect. We propose a new definition of product synergy and prove its adequacy for intercausal reasoning with direct and indirect evidence for the common effect. The new definition is based on a new property matrix half positive semi-definiteness, a weakened form of matrix positive semi-definiteness.


Efficient Search-Based Inference for Noisy-OR Belief Networks: TopEpsilon

arXiv.org Artificial Intelligence

Inference algorithms for arbitrary belief networks are impractical for large, complex belief networks. Inference algorithms for specialized classes of belief networks have been shown to be more efficient. In this paper, we present a search-based algorithm for approximate inference on arbitrary, noisy-OR belief networks, generalizing earlier work on search-based inference for two-level, noisy-OR belief networks. Initial experimental results appear promising.


Why Is Diagnosis Using Belief Networks Insensitive to Imprecision In Probabilities?

arXiv.org Artificial Intelligence

Recent research has found that diagnostic performance with Bayesian belief networks is often surprisingly insensitive to imprecision in the numerical probabilities. For example, the authors have recently completed an extensive study in which they applied random noise to the numerical probabilities in a set of belief networks for medical diagnosis, subsets of the CPCS network, a subset of the QMR (Quick Medical Reference) focused on liver and bile diseases. The diagnostic performance in terms of the average probabilities assigned to the actual diseases showed small sensitivity even to large amounts of noise. In this paper, we summarize the findings of this study and discuss possible explanations of this low sensitivity. One reason is that the criterion for performance is average probability of the true hypotheses, rather than average error in probability, which is insensitive to symmetric noise distributions. But, we show that even asymmetric, logodds-normal noise has modest effects. A second reason is that the gold-standard posterior probabilities are often near zero or one, and are little disturbed by noise.


Decision Analysis and Expert Systems

AI Magazine

Decision analysis and expert systems are technologies intended to support human reasoning and decision making by formalizing expert knowledge so that it is amenable to mechanized reasoning methods. Despite some common goals, these two paradigms have evolved divergently, with fundamental differences in principle and practice. We present the key ideas of decision analysis and review recent research and applications that aim toward a marriage of these two paradigms. This work combines decision-analytic methods for structuring and encoding uncertain knowledge and preferences with computational techniques from AI for knowledge representation, inference, and explanation.