Hennigh, Oliver
DoMINO: A Decomposable Multi-scale Iterative Neural Operator for Modeling Large Scale Engineering Simulations
Ranade, Rishikesh, Nabian, Mohammad Amin, Tangsali, Kaustubh, Kamenev, Alexey, Hennigh, Oliver, Cherukuri, Ram, Choudhry, Sanjay
Numerical simulations play a critical role in design and development of engineering products and processes. Traditional computational methods, such as CFD, can provide accurate predictions but are computationally expensive, particularly for complex geometries. Several machine learning (ML) models have been proposed in the literature to significantly reduce computation time while maintaining acceptable accuracy. However, ML models often face limitations in terms of accuracy and scalability and depend on significant mesh downsampling, which can negatively affect prediction accuracy and generalization. In this work, we propose a novel ML model architecture, DoMINO (Decomposable Multi-scale Iterative Neural Operator) developed in NVIDIA Modulus to address the various challenges of machine learning based surrogate modeling of engineering simulations. DoMINO is a point cloudbased ML model that uses local geometric information to predict flow fields on discrete points. The DoMINO model is validated for the automotive aerodynamics use case using the DrivAerML dataset. Through our experiments we demonstrate the scalability, performance, accuracy and generalization of our model to both in-distribution and out-of-distribution testing samples. Moreover, the results are analyzed using a range of engineering specific metrics important for validating numerical simulations.
From Deep to Physics-Informed Learning of Turbulence: Diagnostics
King, Ryan, Hennigh, Oliver, Mohan, Arvind, Chertkov, Michael
We describe physical tests validating progress made toward acceleration and automation of hydrodynamic codes in the regime of developed turbulence by two {\bf Deep Learning} (DL) Neural Network (NN) schemes trained on {\bf Direct Numerical Simulations} of turbulence. Even the bare DL solutions, which do not take into account any physics of turbulence explicitly, are impressively good overall when it comes to qualitative description of important features of turbulence. However, the early tests have also uncovered some caveats of the DL approaches. We observe that the static DL scheme, implementing Convolutional GAN and trained on spatial snapshots of turbulence, fails to reproduce intermittency of turbulent fluctuations at small scales and details of the turbulence geometry at large scales. We show that the dynamic NN scheme, LAT-NET, trained on a temporal sequence of turbulence snapshots is capable to correct for the small-scale caveat of the static NN. We suggest a path forward towards improving reproducibility of the large-scale geometry of turbulence with NN.
Automated Design using Neural Networks and Gradient Descent
Hennigh, Oliver
We propose a novel method that makes use of deep neural networks and gradient decent to perform automated design on complex real world engineering tasks. Our approach works by training a neural network to mimic the fitness function of a design optimization task and then, using the differential nature of the neural network, perform gradient decent to maximize the fitness. We demonstrate this methods effectiveness by designing an optimized heat sink and both 2D and 3D airfoils that maximize the lift drag ratio under steady state flow conditions. We highlight that our method has two distinct benefits over other automated design approaches. First, evaluating the neural networks prediction of fitness can be orders of magnitude faster then simulating the system of interest. Second, using gradient decent allows the design space to be searched much more efficiently then other gradient free methods. These two strengths work together to overcome some of the current shortcomings of automated design.
Lat-Net: Compressing Lattice Boltzmann Flow Simulations using Deep Neural Networks
Hennigh, Oliver
Computational Fluid Dynamics (CFD) is a hugely important subject with applications in almost every engineering field, however, fluid simulations are extremely computationally and memory demanding. Towards this end, we present Lat-Net, a method for compressing both the computation time and memory usage of Lattice Boltzmann flow simulations using deep neural networks. Lat-Net employs convolutional autoencoders and residual connections in a fully differentiable scheme to compress the state size of a simulation and learn the dynamics on this compressed form. The result is a computationally and memory efficient neural network that can be iterated and queried to reproduce a fluid simulation. We show that once Lat-Net is trained, it can generalize to large grid sizes and complex geometries while maintaining accuracy. We also show that Lat-Net is a general method for compressing other Lattice Boltzmann based simulations such as Electromagnetism.