Hellander, Andreas
Variational Autoencoders for Efficient Simulation-Based Inference
Nautiyal, Mayank, Shternshis, Andrey, Hellander, Andreas, Singh, Prashant
We present a generative modeling approach based on the variational inference framework for likelihood-free simulation-based inference. The method leverages latent variables within variational autoencoders to efficiently estimate complex posterior distributions arising from stochastic simulations. We explore two variations of this approach distinguished by their treatment of the prior distribution. The first model adapts the prior based on observed data using a multivariate prior network, enhancing generalization across various posterior queries. In contrast, the second model utilizes a standard Gaussian prior, offering simplicity while still effectively capturing complex posterior distributions. We demonstrate the efficacy of these models on well-established benchmark problems, achieving results comparable to flow-based approaches while maintaining computational efficiency and scalability.
Toward efficient resource utilization at edge nodes in federated learning
Alawadi, Sadi, Ait-Mlouk, Addi, Toor, Salman, Hellander, Andreas
Federated learning (FL) enables edge nodes to collaboratively contribute to constructing a global model without sharing their data. This is accomplished by devices computing local, private model updates that are then aggregated by a server. However, computational resource constraints and network communication can become a severe bottleneck for larger model sizes typical for deep learning applications. Edge nodes tend to have limited hardware resources (RAM, CPU), and the network bandwidth and reliability at the edge is a concern for scaling federated fleet applications. In this paper, we propose and evaluate a FL strategy inspired by transfer learning in order to reduce resource utilization on devices, as well as the load on the server and network in each global training round. For each local model update, we randomly select layers to train, freezing the remaining part of the model. In doing so, we can reduce both server load and communication costs per round by excluding all untrained layer weights from being transferred to the server. The goal of this study is to empirically explore the potential trade-off between resource utilization on devices and global model convergence under the proposed strategy. We implement the approach using the federated learning framework FEDn. A number of experiments were carried out over different datasets (CIFAR-10, CASA, and IMDB), performing different tasks using different deep-learning model architectures. Our results show that training the model partially can accelerate the training process, efficiently utilizes resources on-device, and reduce the data transmission by around 75% and 53% when we train 25%, and 50% of the model layers, respectively, without harming the resulting global model accuracy.
FedBot: Enhancing Privacy in Chatbots with Federated Learning
Ait-Mlouk, Addi, Alawadi, Sadi, Toor, Salman, Hellander, Andreas
Chatbots are mainly data-driven and usually based on utterances that might be sensitive. However, training deep learning models on shared data can violate user privacy. Such issues have commonly existed in chatbots since their inception. In the literature, there have been many approaches to deal with privacy, such as differential privacy and secure multi-party computation, but most of them need to have access to users' data. In this context, Federated Learning (FL) aims to protect data privacy through distributed learning methods that keep the data in its location. This paper presents Fedbot, a proof-of-concept (POC) privacy-preserving chatbot that leverages large-scale customer support data. The POC combines Deep Bidirectional Transformer models and federated learning algorithms to protect customer data privacy during collaborative model training. The results of the proof-of-concept showcase the potential for privacy-preserving chatbots to transform the customer support industry by delivering personalized and efficient customer service that meets data privacy regulations and legal requirements. Furthermore, the system is specifically designed to improve its performance and accuracy over time by leveraging its ability to learn from previous interactions.
Accelerating Fair Federated Learning: Adaptive Federated Adam
Ju, Li, Zhang, Tianru, Toor, Salman, Hellander, Andreas
Federated learning is a distributed and privacy-preserving approach to train a statistical model collaboratively from decentralized data of different parties. However, when datasets of participants are not independent and identically distributed (non-IID), models trained by naive federated algorithms may be biased towards certain participants, and model performance across participants is non-uniform. This is known as the fairness problem in federated learning. In this paper, we formulate fairness-controlled federated learning as a dynamical multi-objective optimization problem to ensure fair performance across all participants. To solve the problem efficiently, we study the convergence and bias of Adam as the server optimizer in federated learning, and propose Adaptive Federated Adam (AdaFedAdam) to accelerate fair federated learning with alleviated bias. We validated the effectiveness, Pareto optimality and robustness of AdaFedAdam in numerical experiments and show that AdaFedAdam outperforms existing algorithms, providing better convergence and fairness properties of the federated scheme.
FedQAS: Privacy-aware machine reading comprehension with federated learning
Ait-Mlouk, Addi, Alawadi, Sadi, Toor, Salman, Hellander, Andreas
Machine reading comprehension (MRC) of text data is one important task in Natural Language Understanding. It is a complex NLP problem with a lot of ongoing research fueled by the release of the Stanford Question Answering Dataset (SQuAD) and Conversational Question Answering (CoQA). It is considered to be an effort to teach computers how to "understand" a text, and then to be able to answer questions about it using deep learning. However, until now large-scale training on private text data and knowledge sharing has been missing for this NLP task. Hence, we present FedQAS, a privacy-preserving machine reading system capable of leveraging large-scale private data without the need to pool those datasets in a central location. The proposed approach combines transformer models and federated learning technologies. The system is developed using the FEDn framework and deployed as a proof-of-concept alliance initiative. FedQAS is flexible, language-agnostic, and allows intuitive participation and execution of local model training. In addition, we present the architecture and implementation of the system, as well as provide a reference evaluation based on the SQUAD dataset, to showcase how it overcomes data privacy issues and enables knowledge sharing between alliance members in a Federated learning setting.
Robust and integrative Bayesian neural networks for likelihood-free parameter inference
Wrede, Fredrik, Eriksson, Robin, Jiang, Richard, Petzold, Linda, Engblom, Stefan, Hellander, Andreas, Singh, Prashant
State-of-the-art neural network-based methods for learning summary statistics have delivered promising results for simulation-based likelihood-free parameter inference. Existing approaches require density estimation as a post-processing step building upon deterministic neural networks, and do not take network prediction uncertainty into account. This work proposes a robust integrated approach that learns summary statistics using Bayesian neural networks, and directly estimates the posterior density using categorical distributions. An adaptive sampling scheme selects simulation locations to efficiently and iteratively refine the predictive posterior of the network conditioned on observations. This allows for more efficient and robust convergence on comparatively large prior spaces. We demonstrate our approach on benchmark examples and compare against related methods.
Multi-Statistic Approximate Bayesian Computation with Multi-Armed Bandits
Singh, Prashant, Hellander, Andreas
Approximate Bayesian computation is an established and popular method for likelihood-free inference with applications in many disciplines. The effectiveness of the method depends critically on the availability of well performing summary statistics. Summary statistic selection relies heavily on domain knowledge and carefully engineered features, and can be a laborious time consuming process. Since the method is sensitive to data dimensionality, the process of selecting summary statistics must balance the need to include informative statistics and the dimensionality of the feature vector. This paper proposes to treat the problem of dynamically selecting an appropriate summary statistic from a given pool of candidate summary statistics as a multi-armed bandit problem. This allows approximate Bayesian computation rejection sampling to dynamically focus on a distribution over well performing summary statistics as opposed to a fixed set of statistics. The proposed method is unique in that it does not require any pre-processing and is scalable to a large number of candidate statistics. This enables efficient use of a large library of possible time series summary statistics without prior feature engineering. The proposed approach is compared to state-of-the-art methods for summary statistics selection using a challenging test problem from the systems biology literature.