Heitmann, Benjamin
Secure Evaluation of Knowledge Graph Merging Gain
Eichenberger, Leandro, Cochez, Michael, Heitmann, Benjamin, Decker, Stefan
Finding out the differences and commonalities between the knowledge of two parties is an important task. Such a comparison becomes necessary, when one party wants to determine how much it is worth to acquire the knowledge of the second party, or similarly when two parties try to determine, whether a collaboration could be beneficial. When these two parties cannot trust each other (for example, due to them being competitors) performing such a comparison is challenging as neither of them would be willing to share any of their assets. This paper addresses this problem for knowledge graphs, without a need for non-disclosure agreements nor a third party during the protocol. During the protocol, the intersection between the two knowledge graphs is determined in a privacy preserving fashion. This is followed by the computation of various metrics, which give an indication of the potential gain from obtaining the other parties knowledge graph, while still keeping the actual knowledge graph contents secret. The protocol makes use of blind signatures and (counting) Bloom filters to reduce the amount of leaked information. Finally, the party who wants to obtain the other's knowledge graph can get a part of such in a way that neither party is able to know beforehand which parts of the graph are obtained (i.e., they cannot choose to only get or share the good parts). After inspection of the quality of this part, the Buyer can decide to proceed with the transaction. The analysis of the protocol indicates that the developed protocol is secure against malicious participants. Further experimental analysis shows that the resource consumption scales linear with the number of statements in the knowledge graph.
Personalisation of Social Web Services in the Enterprise Using Spreading Activation for Multi-Source, Cross-Domain Recommendations
Heitmann, Benjamin (National University of Ireland, Galway) | Dabrowski, Maciej (National University of Ireland, Galway) | Passant, Alexandre (National University of Ireland, Galway) | Hayes, Conor (National University of Ireland, Galway) | Griffin, Keith (Cisco Systems)
Existing personalisation approaches, such as collaborative filtering or content based recommendations, are highly dependent on the domain and/or the source of the data. Therefore, there is a need for more accurate means to capture and model the interests of the user across domains, and to interlink them in a semantically-enhanced interest graph. We propose a new approach for multi-source, cross-genre recommendations that can exploit the heterogeneous nature of user profile data, which has been aggregated from multiple personalised web services, such as blogs, wikis and microblogs. Our approach is based on the Spreading Activation model that exploits intrinsic links between entities across a number of data sources. The proposed method is highly customizable and applicable both to generic and specific recommendation scenarios and use cases. With the growing number of Social Web applications in the enterprise (blogs, wikis, micro blogging, etc.), it becomes difficult for knowledge workers to avoid content overload and to quickly identify relevant people, communities and information. We demonstrate the application of our approach in an industrial use case that involves recommendation of social semantic data across multiple services in a distributed collaborative environment.
Using Linked Data to Build Open, Collaborative Recommender Systems
Heitmann, Benjamin (Digital Enterprise Research Institute, National University of Ireland, Galway) | Hayes, Conor (Digital Enterprise Research Institute, National University of Ireland, Galway)
While recommender systems can greatly enhance the user experience, the entry barriers in terms of data acquisition are very high, making it hard for new service providers to compete with existing recommendation services. This paper proposes to build open recommender systems which can utilise Linked Data to mitigate the new-user, new-item and sparsity problems of collaborative recommender systems. We describe how to aggregate data about object centred sociality from different sources and how to process it for collaborative recommendation. To demonstrate the validity of our approach, we augment the data from a closed collaborative music recommender system with Linked Data, and significantly improve its precision and recall.