Goto

Collaborating Authors

 Heinisch, Philipp


From Argumentation to Deliberation: Perspectivized Stance Vectors for Fine-grained (Dis)agreement Analysis

arXiv.org Artificial Intelligence

Debating over conflicting issues is a necessary first step towards resolving conflicts. However, intrinsic perspectives of an arguer are difficult to overcome by persuasive argumentation skills. Proceeding from a debate to a deliberative process, where we can identify actionable options for resolving a conflict requires a deeper analysis of arguments and the perspectives they are grounded in - as it is only from there that one can derive mutually agreeable resolution steps. In this work we develop a framework for a deliberative analysis of arguments in a computational argumentation setup. We conduct a fine-grained analysis of perspectivized stances expressed in the arguments of different arguers or stakeholders on a given issue, aiming not only to identify their opposing views, but also shared perspectives arising from their attitudes, values or needs. We formalize this analysis in Perspectivized Stance Vectors that characterize the individual perspectivized stances of all arguers on a given issue. We construct these vectors by determining issue- and argument-specific concepts, and predict an arguer's stance relative to each of them. The vectors allow us to measure a modulated (dis)agreement between arguers, structured by perspectives, which allows us to identify actionable points for conflict resolution, as a first step towards deliberation.


Architectural Sweet Spots for Modeling Human Label Variation by the Example of Argument Quality: It's Best to Relate Perspectives!

arXiv.org Artificial Intelligence

Many annotation tasks in natural language processing are highly subjective in that there can be different valid and justified perspectives on what is a proper label for a given example. This also applies to the judgment of argument quality, where the assignment of a single ground truth is often questionable. At the same time, there are generally accepted concepts behind argumentation that form a common ground. To best represent the interplay of individual and shared perspectives, we consider a continuum of approaches ranging from models that fully aggregate perspectives into a majority label to "share nothing"-architectures in which each annotator is considered in isolation from all other annotators. In between these extremes, inspired by models used in the field of recommender systems, we investigate the extent to which architectures that include layers to model the relations between different annotators are beneficial for predicting single-annotator labels. By means of two tasks of argument quality classification (argument concreteness and validity/novelty of conclusions), we show that recommender architectures increase the averaged annotator-individual F$_1$-scores up to $43\%$ over a majority label model. Our findings indicate that approaches to subjectivity can benefit from relating individual perspectives.


Similarity-weighted Construction of Contextualized Commonsense Knowledge Graphs for Knowledge-intense Argumentation Tasks

arXiv.org Artificial Intelligence

Arguments often do not make explicit how a conclusion follows from its premises. To compensate for this lack, we enrich arguments with structured background knowledge to support knowledge-intense argumentation tasks. We present a new unsupervised method for constructing Contextualized Commonsense Knowledge Graphs (CCKGs) that selects contextually relevant knowledge from large knowledge graphs (KGs) efficiently and at high quality. Our work goes beyond context-insensitive knowledge extraction heuristics by computing semantic similarity between KG triplets and textual arguments. Using these triplet similarities as weights, we extract contextualized knowledge paths that connect a conclusion to its premise, while maximizing similarity to the argument. We combine multiple paths into a CCKG that we optionally prune to reduce noise and raise precision. Intrinsic evaluation of the quality of our graphs shows that our method is effective for (re)constructing human explanation graphs. Manual evaluations in a large-scale knowledge selection setup confirm high recall and precision of implicit CSK in the CCKGs. Finally, we demonstrate the effectiveness of CCKGs in a knowledge-insensitive argument quality rating task, outperforming strong baselines and rivaling a GPT-3 based system.