Hein, Matthias
Spectral Clustering of Signed Graphs via Matrix Power Means
Mercado, Pedro, Tudisco, Francesco, Hein, Matthias
Signed graphs encode positive (attractive) and negative (repulsive) relations between nodes. We extend spectral clustering to signed graphs via the one-parameter family of Signed Power Mean Laplacians, defined as the matrix power mean of normalized standard and signless Laplacians of positive and negative edges. We provide a thorough analysis of the proposed approach in the setting of a general Stochastic Block Model that includes models such as the Labeled Stochastic Block Model and the Censored Block Model. We show that in expectation the signed power mean Laplacian captures the ground truth clusters under reasonable settings where state-of-the-art approaches fail. Moreover, we prove that the eigenvalues and eigenvector of the signed power mean Laplacian concentrate around their expectation under reasonable conditions in the general Stochastic Block Model. Extensive experiments on random graphs and real world datasets confirm the theoretically predicted behaviour of the signed power mean Laplacian and show that it compares favourably with state-of-the-art methods.
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks
Croce, Francesco, Rauber, Jonas, Hein, Matthias
Modern neural networks are highly non-robust against adversarial manipulation. A significant amount of work has been invested in techniques to compute lower bounds on robustness through formal guarantees and to build provably robust model. However it is still difficult to apply them to larger networks or in order to get robustness against larger perturbations. Thus attack strategies are needed to provide tight upper bounds on the actual robustness. We significantly improve the randomized gradient-free attack for ReLU networks [9], in particular by scaling it up to large networks. We show that our attack achieves similar or significantly smaller robust accuracy than state-of-the-art attacks like PGD or the one of Carlini and Wagner, thus revealing an overestimation of the robustness by these state-of-the-art methods. Our attack is not based on a gradient descent scheme and in this sense gradient-free, which makes it less sensitive to the choice of hyperparameters as no careful selection of the stepsize is required.
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Hein, Matthias, Andriushchenko, Maksym, Bitterwolf, Julian
Classifiers used in the wild, in particular for safety-critical systems, should not only have good generalization properties but also should know when they don't know, in particular make low confidence predictions far away from the training data. We show that ReLU type neural networks which yield a piecewise linear classifier function fail in this regard as they produce almost always high confidence predictions far away from the training data. For bounded domains like images we propose a new robust optimization technique similar to adversarial training which enforces low confidence predictions far away from the training data. We show that this technique is surprisingly effective in reducing the confidence of predictions far away from the training data while maintaining high confidence predictions and similar test error on the original classification task compared to standard training.
Disentangling Adversarial Robustness and Generalization
Stutz, David, Hein, Matthias, Schiele, Bernt
Obtaining deep networks that are robust against adversarial examples and generalize well is an open problem. A recent hypothesis even states that both robust and accurate models are impossible, i.e., adversarial robustness and generalization are conflicting goals. In an effort to clarify the relationship between robustness and generalization, we assume an underlying, low-dimensional data manifold and show that: 1. regular adversarial examples leave the manifold; 2. adversarial examples constrained to the manifold, i.e., on-manifold adversarial examples, exist; 3. on-manifold adversarial examples are generalization errors, and on-manifold adversarial training boosts generalization; 4. and regular robustness is independent of generalization. These assumptions imply that both robust and accurate models are possible. However, different models (architectures, training strategies etc.) can exhibit different robustness and generalization characteristics. To confirm our claims, we present extensive experiments on synthetic data (with access to the true manifold) as well as on EMNIST, Fashion-MNIST and CelebA.
A randomized gradient-free attack on ReLU networks
Croce, Francesco, Hein, Matthias
It has recently been shown that neural networks but also other classifiers are vulnerable to so called adversarial attacks e.g. in object recognition an almost non-perceivable change of the image changes the decision of the classifier. Relatively fast heuristics have been proposed to produce these adversarial inputs but the problem of finding the optimal adversarial input, that is with the minimal change of the input, is NP-hard. While methods based on mixed-integer optimization which find the optimal adversarial input have been developed, they do not scale to large networks. Currently, the attack scheme proposed by Carlini and Wagner is considered to produce the best adversarial inputs. In this paper we propose a new attack scheme for the class of ReLU networks based on a direct optimization on the resulting linear regions. In our experimental validation we improve in all except one experiment out of 18 over the Carlini-Wagner attack with a relative improvement of up to 9\%. As our approach is based on the geometrical structure of ReLU networks, it is less susceptible to defences targeting their functional properties.
Logit Pairing Methods Can Fool Gradient-Based Attacks
Mosbach, Marius, Andriushchenko, Maksym, Trost, Thomas, Hein, Matthias, Klakow, Dietrich
Recently, several logit regularization methods have been proposed in [Kannan et al., 2018] to improve the adversarial robustness of classifiers. We show that the proposed computationally fast methods - Clean Logit Pairing (CLP) and Logit Squeezing (LSQ) - just make the gradient-based optimization problem of crafting adversarial examples harder, without providing actual robustness. For Adversarial Logit Pairing (ALP) we find that it can give indeed robustness against adversarial examples and we study it in different settings. Especially, we show that ALP may provide additional robustness when combined with adversarial training. However, the increase is much smaller than claimed by [Kannan et al., 2018]. Finally, our results suggest that evaluation against an iterative PGD attack relies heavily on the parameters used and may result in false conclusions regarding the robustness.
Provable Robustness of ReLU networks via Maximization of Linear Regions
Croce, Francesco, Andriushchenko, Maksym, Hein, Matthias
It has been shown that neural network classifiers are not robust. This raises concerns about their usage in safety-critical systems. We propose in this paper a regularization scheme for ReLU networks which provably improves the robustness of the classifier by maximizing the linear region of the classifier as well as the distance to the decision boundary. Our techniques allow even to find the minimal adversarial perturbation for a fraction of test points for large networks. In the experiments we show that our approach improves upon adversarial training both in terms of lower and upper bounds on the robustness and is comparable or better than the state of the art in terms of test error and robustness.
On the loss landscape of a class of deep neural networks with no bad local valleys
Nguyen, Quynh, Mukkamala, Mahesh Chandra, Hein, Matthias
We identify a class of over-parameterized deep neural networks with standard activation functions and cross-entropy loss which provably have no bad local valley, in the sense that from any point in parameter space there exists a continuous path on which the cross-entropy loss is non-increasing and gets arbitrarily close to zero. This implies that these networks have no sub-optimal strict local minima.
The Power Mean Laplacian for Multilayer Graph Clustering
Mercado, Pedro, Gautier, Antoine, Tudisco, Francesco, Hein, Matthias
Multilayer graphs encode different kind of interactions between the same set of entities. When one wants to cluster such a multilayer graph, the natural question arises how one should merge the information different layers. We introduce in this paper a one-parameter family of matrix power means for merging the Laplacians from different layers and analyze it in expectation in the stochastic block model. We show that this family allows to recover ground truth clusters under different settings and verify this in real world data. While computing the matrix power mean can be very expensive for large graphs, we introduce a numerical scheme to efficiently compute its eigenvectors for the case of large sparse graphs.