Heim, Eric
A Guide to Failure in Machine Learning: Reliability and Robustness from Foundations to Practice
Heim, Eric, Wright, Oren, Shriver, David
One of the main barriers to adoption of Machine Learning (ML) is that ML models can fail unexpectedly. In this work, we aim to provide practitioners a guide to better understand why ML models fail and equip them with techniques they can use to reason about failure. Specifically, we discuss failure as either being caused by lack of reliability or lack of robustness. Differentiating the causes of failure in this way allows us to formally define why models fail from first principles and tie these definitions to engineering concepts and real-world deployment settings. Throughout the document we provide 1) a summary of important theoretic concepts in reliability and robustness, 2) a sampling current techniques that practitioners can utilize to reason about ML model reliability and robustness, and 3) examples that show how these concepts and techniques can apply to real-world settings.
Constrained Generative Adversarial Networks for Interactive Image Generation
Heim, Eric
Generative Adversarial Networks (GANs) have received a great deal of attention due in part to recent success in generating original, high-quality samples from visual domains. However, most current methods only allow for users to guide this image generation process through limited interactions. In this work we develop a novel GAN framework that allows humans to be "in-the-loop" of the image generation process. Our technique iteratively accepts relative constraints of the form "Generate an image more like image A than image B". After each constraint is given, the user is presented with new outputs from the GAN, informing the next round of feedback. This feedback is used to constrain the output of the GAN with respect to an underlying semantic space that can be designed to model a variety of different notions of similarity (e.g. classes, attributes, object relationships, color, etc.). In our experiments, we show that our GAN framework is able to generate images that are of comparable quality to equivalent unsupervised GANs while satisfying a large number of the constraints provided by users, effectively changing a GAN into one that allows users interactive control over image generation without sacrificing image quality.
Exploiting Class Learnability in Noisy Data
Klawonn, Matthew, Heim, Eric, Hendler, James
In many domains, collecting sufficient labeled training data for supervised machine learning requires easily accessible but noisy sources, such as crowdsourcing services or tagged Web data. Noisy labels occur frequently in data sets harvested via these means, sometimes resulting in entire classes of data on which learned classifiers generalize poorly. For real world applications, we argue that it can be beneficial to avoid training on such classes entirely. In this work, we aim to explore the classes in a given data set, and guide supervised training to spend time on a class proportional to its learnability. By focusing the training process, we aim to improve model generalization on classes with a strong signal. To that end, we develop an online algorithm that works in conjunction with classifier and training algorithm, iteratively selecting training data for the classifier based on how well it appears to generalize on each class. Testing our approach on a variety of data sets, we show our algorithm learns to focus on classes for which the model has low generalization error relative to strong baselines, yielding a classifier with good performance on learnable classes.
Generating Triples With Adversarial Networks for Scene Graph Construction
Klawonn, Matthew (Rensselaer Polytechnic Institute) | Heim, Eric (Information Directorate)
Driven by successes in deep learning, computer vision research has begun to move beyond object detection and image classification to more sophisticated tasks like image captioning or visual question answering. Motivating such endeavors is the desire for models to capture not only objects present in an image, but more fine-grained aspects of a scene such as relationships between objects and their attributes. Scene graphs provide a formal construct for capturing these aspects of an image. Despite this, there have been only a few recent efforts to generate scene graphs from imagery. Previous works limit themselves to settings where bounding box information is available at train time and do not attempt to generate scene graphs with attributes. In this paper we propose a method, based on recent advancements in Generative Adversarial Networks, to overcome these deficiencies. We take the approach of first generating small subgraphs, each describing a single statement about a scene from a specific region of the input image chosen using an attention mechanism. By doing so, our method is able to produce portions of the scene graphs with attribute information without the need for bounding box labels. Then, the complete scene graph is constructed from these subgraphs. We show that our model improves upon prior work in scene graph generation on state-of-the-art data sets and accepted metrics. Further, we demonstrate that our model is capable of handling a larger vocabulary size than prior work has attempted.
Active Perceptual Similarity Modeling with Auxiliary Information
Heim, Eric, Berger, Matthew, Seversky, Lee, Hauskrecht, Milos
Learning a model of perceptual similarity from a collection of objects is a fundamental task in machine learning underlying numerous applications. A common way to learn such a model is from relative comparisons in the form of triplets: responses to queries of the form "Is object a more similar to b than it is to c?". If no consideration is made in the determination of which queries to ask, existing similarity learning methods can require a prohibitively large number of responses. In this work, we consider the problem of actively learning from triplets -finding which queries are most useful for learning. Different from previous active triplet learning approaches, we incorporate auxiliary information into our similarity model and introduce an active learning scheme to find queries that are informative for quickly learning both the relevant aspects of auxiliary data and the directly-learned similarity components. Compared to prior approaches, we show that we can learn just as effectively with much fewer queries. For evaluation, we introduce a new dataset of exhaustive triplet comparisons obtained from humans and demonstrate improved performance for different types of auxiliary information.