Goto

Collaborating Authors

 Heckerman, David


An Experimental Comparison of Several Clustering and Initialization Methods

arXiv.org Machine Learning

We examine methods for clustering in high dimensions. In the first part of the paper, we perform an experimental comparison between three batch clustering algorithms: the Expectation-Maximization (EM) algorithm, a winner take all version of the EM algorithm reminiscent of the K-means algorithm, and model-based hierarchical agglomerative clustering. We learn naive-Bayes models with a hidden root node, using high-dimensional discrete-variable data sets (both real and synthetic). We find that the EM algorithm significantly outperforms the other methods, and proceed to investigate the effect of various initialization schemes on the final solution produced by the EM algorithm. The initializations that we consider are (1) parameters sampled from an uninformative prior, (2) random perturbations of the marginal distribution of the data, and (3) the output of hierarchical agglomerative clustering. Although the methods are substantially different, they lead to learned models that are strikingly similar in quality.


Continuous Time Dynamic Topic Models

arXiv.org Machine Learning

In this paper, we develop the continuous time dynamic topic model (cDTM). The cDTM is a dynamic topic model that uses Brownian motion to model the latent topics through a sequential collection of documents, where a "topic" is a pattern of word use that we expect to evolve over the course of the collection. We derive an efficient variational approximate inference algorithm that takes advantage of the sparsity of observations in text, a property that lets us easily handle many time points. In contrast to the cDTM, the original discrete-time dynamic topic model (dDTM) requires that time be discretized. Moreover, the complexity of variational inference for the dDTM grows quickly as time granularity increases, a drawback which limits fine-grained discretization. We demonstrate the cDTM on two news corpora, reporting both predictive perplexity and the novel task of time stamp prediction.


Asymptotic Model Selection for Directed Networks with Hidden Variables

arXiv.org Machine Learning

We extend the Bayesian Information Criterion (BIC), an asymptotic approximation for the marginal likelihood, to Bayesian networks with hidden variables. This approximation can be used to select models given large samples of data. The standard BIC as well as our extension punishes the complexity of a model according to the dimension of its parameters. We argue that the dimension of a Bayesian network with hidden variables is the rank of the Jacobian matrix of the transformation between the parameters of the network and the parameters of the observable variables. We compute the dimensions of several networks including the naive Bayes model with a hidden root node.


A Bayesian Approach to Learning Bayesian Networks with Local Structure

arXiv.org Machine Learning

Recently several researchers have investigated techniques for using data to learn Bayesian networks containing compact representations for the conditional probability distributions (CPDs) stored at each node. The majority of this work has concentrated on using decision-tree representations for the CPDs. In addition, researchers typically apply non-Bayesian (or asymptotically Bayesian) scoring functions such as MDL to evaluate the goodness-of-fit of networks to the data. In this paper we investigate a Bayesian approach to learning Bayesian networks that contain the more general decision-graph representations of the CPDs. First, we describe how to evaluate the posterior probability that is, the Bayesian score of such a network, given a database of observed cases. Second, we describe various search spaces that can be used, in conjunction with a scoring function and a search procedure, to identify one or more high-scoring networks. Finally, we present an experimental evaluation of the search spaces, using a greedy algorithm and a Bayesian scoring function.


Learning Mixtures of DAG Models

arXiv.org Machine Learning

We describe computationally efficient methods for learning mixtures in which each component is a directed acyclic graphical model (mixtures of DAGs or MDAGs). We argue that simple search-and-score algorithms are infeasible for a variety of problems, and introduce a feasible approach in which parameter and structure search is interleaved and expected data is treated as real data. Our approach can be viewed as a combination of (1) the Cheeseman--Stutz asymptotic approximation for model posterior probability and (2) the Expectation--Maximization algorithm. We evaluate our procedure for selecting among MDAGs on synthetic and real examples.


Efficient Approximations for the Marginal Likelihood of Incomplete Data Given a Bayesian Network

arXiv.org Machine Learning

We discuss Bayesian methods for learning Bayesian networks when data sets are incomplete. In particular, we examine asymptotic approximations for the marginal likelihood of incomplete data given a Bayesian network. We consider the Laplace approximation and the less accurate but more efficient BIC/MDL approximation. We also consider approximations proposed by Draper (1993) and Cheeseman and Stutz (1995). These approximations are as efficient as BIC/MDL, but their accuracy has not been studied in any depth. We compare the accuracy of these approximations under the assumption that the Laplace approximation is the most accurate. In experiments using synthetic data generated from discrete naive-Bayes models having a hidden root node, we find that the CS measure is the most accurate.


Addendum on the scoring of Gaussian directed acyclic graphical models

arXiv.org Machine Learning

We provide a correction to the expression for scoring Gaussian directed acyclic graphical models derived in Geiger and Heckerman [Ann. Statist. 30 (2002) 1414-1440] and discuss how to evaluate the score efficiently.


Modular Belief Updates and Confusion about Measures of Certainty in Artificial Intelligence Research

arXiv.org Artificial Intelligence

Over the last decade, there has been growing interest in the use or measures or change in belief for reasoning with uncertainty in artificial intelligence research. An important characteristic of several methodologies that reason with changes in belief or belief updates, is a property that we term modularity. We call updates that satisfy this property modular updates. Whereas probabilistic measures of belief update - which satisfy the modularity property were first discovered in the nineteenth century, knowledge and discussion of these quantities remains obscure in artificial intelligence research. We define modular updates and discuss their inappropriate use in two influential expert systems.


A powerful and efficient set test for genetic markers that handles confounders

arXiv.org Machine Learning

Approaches for testing sets of variants, such as a set of rare or common variants within a gene or pathway, for association with complex traits are important. In particular, set tests allow for aggregation of weak signal within a set, can capture interplay among variants, and reduce the burden of multiple hypothesis testing. Until now, these approaches did not address confounding by family relatedness and population structure, a problem that is becoming more important as larger data sets are used to increase power. Results: We introduce a new approach for set tests that handles confounders. Our model is based on the linear mixed model and uses two random effects-one to capture the set association signal and one to capture confounders. We also introduce a computational speedup for two-random-effects models that makes this approach feasible even for extremely large cohorts. Using this model with both the likelihood ratio test and score test, we find that the former yields more power while controlling type I error. Application of our approach to richly structured GAW14 data demonstrates that our method successfully corrects for population structure and family relatedness, while application of our method to a 15,000 individual Crohn's disease case-control cohort demonstrates that it additionally recovers genes not recoverable by univariate analysis. Availability: A Python-based library implementing our approach is available at http://mscompbio.codeplex.com


A Backwards View for Assessment

arXiv.org Artificial Intelligence

Much artificial intelligence research focuses on the problem of deducing the validity of unobservable propositions or hypotheses from observable evidence.! Many of the knowledge representation techniques designed for this problem encode the relationship between evidence and hypothesis in a directed manner. Moreover, the direction in which evidence is stored is typically from evidence to hypothesis.