Goto

Collaborating Authors

 Hebenstreit, Konstantin


TRIAGE: Ethical Benchmarking of AI Models Through Mass Casualty Simulations

arXiv.org Artificial Intelligence

We present the TRIAGE Benchmark, a novel machine ethics (ME) benchmark that tests LLMs' ability to make ethical decisions during mass casualty incidents. It uses real-world ethical dilemmas with clear solutions designed by medical professionals, offering a more realistic alternative to annotation-based benchmarks. TRIAGE incorporates various prompting styles to evaluate model performance across different contexts. Most models consistently outperformed random guessing, suggesting LLMs may support decision-making in triage scenarios. Neutral or factual scenario formulations led to the best performance, unlike other ME benchmarks where ethical reminders improved outcomes. Adversarial prompts reduced performance but not to random guessing levels. Open-source models made more morally serious errors, and general capability overall predicted better performance.


An automatically discovered chain-of-thought prompt generalizes to novel models and datasets

arXiv.org Artificial Intelligence

Emergent chain-of-thought (CoT) reasoning capabilities promise to improve performance and explainability of large language models (LLMs). However, uncertainties remain about how reasoning strategies formulated for previous model generations generalize to new model generations and different datasets. In this small-scale study, we compare different reasoning strategies induced by zero-shot prompting across six recently released LLMs (davinci-002, davinci-003, GPT-3.5-turbo, GPT-4, Flan-T5-xxl and Cohere command-xlarge) on a mixture of six question-answering datasets, including datasets from scientific and medical domains. Our findings demonstrate that while some variations in effectiveness occur, gains from CoT reasoning strategies remain robust across different models and datasets. GPT-4 has the most benefit from current state-of-the-art reasoning strategies and exhibits the best performance by applying a prompt previously discovered through automated discovery.


ThoughtSource: A central hub for large language model reasoning data

arXiv.org Artificial Intelligence

Large language models (LLMs) such as GPT-4 have recently demonstrated impressive results across a wide range of tasks. LLMs are still limited, however, in that they frequently fail at complex reasoning, their reasoning processes are opaque, they are prone to 'hallucinate' facts, and there are concerns about their underlying biases. Letting models verbalize reasoning steps as natural language, a technique known as chain-of-thought prompting, has recently been proposed as a way to address some of these issues. Here we present ThoughtSource, a meta-dataset and software library for chain-of-thought (CoT) reasoning. The goal of ThoughtSource is to improve future artificial intelligence systems by facilitating qualitative understanding of CoTs, enabling empirical evaluations, and providing training data. This first release of ThoughtSource integrates seven scientific/medical, three general-domain and five math word question answering datasets.