He, Zongtao
Vision-and-Language Navigation via Causal Learning
Wang, Liuyi, He, Zongtao, Dang, Ronghao, Shen, Mengjiao, Liu, Chengju, Chen, Qijun
In the pursuit of robust and generalizable environment perception and language understanding, the ubiquitous challenge of dataset bias continues to plague vision-and-language navigation (VLN) agents, hindering their performance in unseen environments. This paper introduces the generalized cross-modal causal transformer (GOAT), a pioneering solution rooted in the paradigm of causal inference. By delving into both observable and unobservable confounders within vision, language, and history, we propose the back-door and front-door adjustment causal learning (BACL and FACL) modules to promote unbiased learning by comprehensively mitigating potential spurious correlations. Additionally, to capture global confounder features, we propose a cross-modal feature pooling (CFP) module supervised by contrastive learning, which is also shown to be effective in improving cross-modal representations during pre-training. Extensive experiments across multiple VLN datasets (R2R, REVERIE, RxR, and SOON) underscore the superiority of our proposed method over previous state-of-the-art approaches. Code is available at https://github.com/CrystalSixone/VLN-GOAT.
A Dual Semantic-Aware Recurrent Global-Adaptive Network For Vision-and-Language Navigation
Wang, Liuyi, He, Zongtao, Tang, Jiagui, Dang, Ronghao, Wang, Naijia, Liu, Chengju, Chen, Qijun
Vision-and-Language Navigation (VLN) is a realistic but challenging task that requires an agent to locate the target region using verbal and visual cues. While significant advancements have been achieved recently, there are still two broad limitations: (1) The explicit information mining for significant guiding semantics concealed in both vision and language is still under-explored; (2) The previously structured map method provides the average historical appearance of visited nodes, while it ignores distinctive contributions of various images and potent information retention in the reasoning process. This work proposes a dual semantic-aware recurrent global-adaptive network (DSRG) to address the above problems. First, DSRG proposes an instruction-guidance linguistic module (IGL) and an appearance-semantics visual module (ASV) for boosting vision and language semantic learning respectively. For the memory mechanism, a global adaptive aggregation module (GAA) is devised for explicit panoramic observation fusion, and a recurrent memory fusion module (RMF) is introduced to supply implicit temporal hidden states. Extensive experimental results on the R2R and REVERIE datasets demonstrate that our method achieves better performance than existing methods. Code is available at https://github.com/CrystalSixone/DSRG.
MLANet: Multi-Level Attention Network with Sub-instruction for Continuous Vision-and-Language Navigation
He, Zongtao, Wang, Liuyi, Li, Shu, Yan, Qingqing, Liu, Chengju, Chen, Qijun
Vision-and-Language Navigation (VLN) aims to develop intelligent agents to navigate in unseen environments only through language and vision supervision. In the recently proposed continuous settings (continuous VLN), the agent must act in a free 3D space and faces tougher challenges like real-time execution, complex instruction understanding, and long action sequence prediction. For a better performance in continuous VLN, we design a multi-level instruction understanding procedure and propose a novel model, Multi-Level Attention Network (MLANet). The first step of MLANet is to generate sub-instructions efficiently. We design a Fast Sub-instruction Algorithm (FSA) to segment the raw instruction into sub-instructions and generate a new sub-instruction dataset named ``FSASub". FSA is annotation-free and faster than the current method by 70 times, thus fitting the real-time requirement in continuous VLN. To solve the complex instruction understanding problem, MLANet needs a global perception of the instruction and observations. We propose a Multi-Level Attention (MLA) module to fuse vision, low-level semantics, and high-level semantics, which produce features containing a dynamic and global comprehension of the task. MLA also mitigates the adverse effects of noise words, thus ensuring a robust understanding of the instruction. To correctly predict actions in long trajectories, MLANet needs to focus on what sub-instruction is being executed every step. We propose a Peak Attention Loss (PAL) to improve the flexible and adaptive selection of the current sub-instruction. PAL benefits the navigation agent by concentrating its attention on the local information, thus helping the agent predict the most appropriate actions. We train and test MLANet in the standard benchmark. Experiment results show MLANet outperforms baselines by a significant margin.
Multiple Thinking Achieving Meta-Ability Decoupling for Object Navigation
Dang, Ronghao, Chen, Lu, Wang, Liuyi, He, Zongtao, Liu, Chengju, Chen, Qijun
We propose a meta-ability decoupling (MAD) paradigm, which brings together various object navigation methods in an architecture system, allowing them to mutually enhance each other and evolve together. Based on the MAD paradigm, we design a multiple thinking (MT) model that leverages distinct thinking to abstract various meta-abilities. Our method decouples meta-abilities from three aspects: input, encoding, and reward while employing the multiple thinking collaboration (MTC) module to promote mutual cooperation between thinking. MAD introduces a novel qualitative and quantitative interpretability system for object navigation. Through extensive experiments on AI2-Thor and RoboTHOR, we demonstrate that our method outperforms state-of-the-art (SOTA) methods on both typical and zero-shot object navigation tasks.