Goto

Collaborating Authors

 He, Zihao


CPL-NoViD: Context-Aware Prompt-based Learning for Norm Violation Detection in Online Communities

arXiv.org Artificial Intelligence

Detecting norm violations in online communities is critical to maintaining healthy and safe spaces for online discussions. Existing machine learning approaches often struggle to adapt to the diverse rules and interpretations across different communities due to the inherent challenges of fine-tuning models for such context-specific tasks. In this paper, we introduce Context-aware Prompt-based Learning for Norm Violation Detection (CPL-NoViD), a novel method that employs prompt-based learning to detect norm violations across various types of rules. CPL-NoViD outperforms the baseline by incorporating context through natural language prompts and demonstrates improved performance across different rule types. Significantly, it not only excels in cross-rule-type and cross-community norm violation detection but also exhibits adaptability in few-shot learning scenarios. Most notably, it establishes a new state-of-the-art in norm violation detection, surpassing existing benchmarks. Our work highlights the potential of prompt-based learning for context-sensitive norm violation detection and paves the way for future research on more adaptable, context-aware models to better support online community moderators.


Anger Breeds Controversy: Analyzing Controversy and Emotions on Reddit

arXiv.org Artificial Intelligence

Emotions play an important role in interpersonal interactions and social conflict, yet their function in the development of controversy and disagreement in online conversations has not been explored. To address this gap, we study controversy on Reddit, a popular network of online discussion forums. We collect discussions from a wide variety of topical forums and use emotion detection to recognize a range of emotions from text, including anger, fear, joy, admiration, etc. Our study has three main findings. First, controversial comments express more anger and less admiration, joy and optimism than non-controversial comments. Second, controversial comments affect emotions of downstream comments in a discussion, usually resulting in long-term increase in anger and a decrease in positive emotions, although the magnitude and direction of emotional change depends on the forum. Finally, we show that emotions help better predict which comments will become controversial. Understanding emotional dynamics of online discussions can help communities to better manage conversations.