Goto

Collaborating Authors

 He, Zhiyuan


Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely

arXiv.org Artificial Intelligence

Large language models (LLMs) augmented with external data have demonstrated remarkable capabilities in completing real-world tasks. Techniques for integrating external data into LLMs, such as Retrieval-Augmented Generation (RAG) and fine-tuning, are gaining increasing attention and widespread application. Nonetheless, the effective deployment of data-augmented LLMs across various specialized fields presents substantial challenges. These challenges encompass a wide range of issues, from retrieving relevant data and accurately interpreting user intent to fully harnessing the reasoning capabilities of LLMs for complex tasks. We believe that there is no one-size-fits-all solution for data-augmented LLM applications. In practice, underperformance often arises from a failure to correctly identify the core focus of a task or because the task inherently requires a blend of multiple capabilities that must be disentangled for better resolution. In this survey, we propose a RAG task categorization method, classifying user queries into four levels based on the type of external data required and primary focus of the task: explicit fact queries, implicit fact queries, interpretable rationale queries, and hidden rationale queries. We define these levels of queries, provide relevant datasets, and summarize the key challenges and most effective techniques for addressing these challenges. Finally, we discuss three main forms of integrating external data into LLMs: context, small model, and fine-tuning, highlighting their respective strengths, limitations, and the types of problems they are suited to solve. This work aims to help readers thoroughly understand and decompose the data requirements and key bottlenecks in building LLM applications, offering solutions to the different challenges and serving as a guide to systematically developing such applications.


Position Engineering: Boosting Large Language Models through Positional Information Manipulation

arXiv.org Artificial Intelligence

The performance of large language models (LLMs) is significantly influenced by the quality of the prompts provided. In response, researchers have developed enormous prompt engineering strategies aimed at modifying the prompt text to enhance task performance. In this paper, we introduce a novel technique termed position engineering, which offers a more efficient way to guide large language models. Unlike prompt engineering, which requires substantial effort to modify the text provided to LLMs, position engineering merely involves altering the positional information in the prompt without modifying the text itself. We have evaluated position engineering in two widely-used LLM scenarios: retrieval-augmented generation (RAG) and in-context learning (ICL). Our findings show that position engineering substantially improves upon the baseline in both cases. Position engineering thus represents a promising new strategy for exploiting the capabilities of large language models.


LLM-ABR: Designing Adaptive Bitrate Algorithms via Large Language Models

arXiv.org Artificial Intelligence

We present LLM-ABR, the first system that utilizes the generative capabilities of large language models (LLMs) to autonomously design adaptive bitrate (ABR) algorithms tailored for diverse network characteristics. Operating within a reinforcement learning framework, LLM-ABR empowers LLMs to design key components such as states and neural network architectures. We evaluate LLM-ABR across diverse network settings, including broadband, satellite, 4G, and 5G. LLM-ABR consistently outperforms default ABR algorithms.


TSNet-SAC: Leveraging Transformers for Efficient Task Scheduling

arXiv.org Artificial Intelligence

In future 6G Mobile Edge Computing (MEC), autopilot systems require the capability of processing multimodal data with strong interdependencies. However, traditional heuristic algorithms are inadequate for real-time scheduling due to their requirement for multiple iterations to derive the optimal scheme. We propose a novel TSNet-SAC based on Transformer, that utilizes heuristic algorithms solely to guide the training of TSNet. Additionally, a Sliding Augment Component (SAC) is introduced to enhance the robustness and resolve algorithm defects. Furthermore, the Extender component is designed to handle multi-scale training data and provide network scalability, enabling TSNet to adapt to different access scenarios. Simulation demonstrates that TSNet-SAC outperforms existing networks in accuracy and robustness, achieving superior scheduling-making latency compared to heuristic algorithms.


Gradient Boosting Machine: A Survey

arXiv.org Machine Learning

Proposed by Freund and Schapire ( 1997), boosting is a general issue of constructing an extremely accurate prediction with numerous roughly accurate pred ictions. Addressed by Friedman ( 2001, 2002) and Natekin and Knoll ( 2013), the Gradient Boosting Machines (GBM) seeks to build predictive models through back-fittings and no n-parametric regressions. Instead of building a single model, the GBM starts by generatin g an initial model and constantly fits new models through loss function minimization to prod uce the most precise model ( Natekin and Knoll, 2013). This survey concentrates on the mathematical derivations of the gradient boosting algorithms. In Section 2, we analyze the optimization methods for par ametric and nonparametric models. Section 3 covers the definitions of different typ es of loss functions. In Section 4, we present different types of boosting algorithms, while in Section 5, we explore the combination of boosting algorithms and ranking algorithms to ran k the real-world data.


Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

arXiv.org Machine Learning

Associating image regions with text queries has been recently explored as a new way to bridge visual and linguistic representations. A few pioneering approaches have been proposed based on recurrent neural language models trained generatively (e.g., generating captions), but achieving somewhat limited localization accuracy. To better address natural-language-based visual entity localization, we propose a discriminative approach. We formulate a discriminative bimodal neural network (DBNet), which can be trained by a classifier with extensive use of negative samples. Our training objective encourages better localization on single images, incorporates text phrases in a broad range, and properly pairs image regions with text phrases into positive and negative examples. Experiments on the Visual Genome dataset demonstrate the proposed DBNet significantly outperforms previous state-of-the-art methods both for localization on single images and for detection on multiple images. We we also establish an evaluation protocol for natural-language visual detection.