Goto

Collaborating Authors

 He, Yi


Efficient Human-in-the-loop System for Guiding DNNs Attention

arXiv.org Artificial Intelligence

Attention guidance is an approach to addressing dataset bias in deep learning, where the model relies on incorrect features to make decisions. Focusing on image classification tasks, we propose an efficient human-in-the-loop system to interactively direct the attention of classifiers to the regions specified by users, thereby reducing the influence of co-occurrence bias and improving the transferability and interpretability of a DNN. Previous approaches for attention guidance require the preparation of pixel-level annotations and are not designed as interactive systems. We present a new interactive method to allow users to annotate images with simple clicks, and study a novel active learning strategy to significantly reduce the number of annotations. We conducted both a numerical evaluation and a user study to evaluate the proposed system on multiple datasets. Compared to the existing non-active-learning approach which usually relies on huge amounts of polygon-based segmentation masks to fine-tune or train the DNNs, our system can save lots of labor and money and obtain a fine-tuned network that works better even when the dataset is biased. The experiment results indicate that the proposed system is efficient, reasonable, and reliable.


Multi-Metric AutoRec for High Dimensional and Sparse User Behavior Data Prediction

arXiv.org Artificial Intelligence

User behavior data produced during interaction with massive items in the significant data era are generally heterogeneous and sparse, leaving the recommender system (RS) a large diversity of underlying patterns to excavate. Deep neural network-based models have reached the state-of-the-art benchmark of the RS owing to their fitting capabilities. However, prior works mainly focus on designing an intricate architecture with fixed loss function and regulation. These single-metric models provide limited performance when facing heterogeneous and sparse user behavior data. Motivated by this finding, we propose a multi-metric AutoRec (MMA) based on the representative AutoRec. The idea of the proposed MMA is mainly two-fold: 1) apply different $L_p$-norm on loss function and regularization to form different variant models in different metric spaces, and 2) aggregate these variant models. Thus, the proposed MMA enjoys the multi-metric orientation from a set of dispersed metric spaces, achieving a comprehensive representation of user data. Theoretical studies proved that the proposed MMA could attain performance improvement. The extensive experiment on five real-world datasets proves that MMA can outperform seven other state-of-the-art models in predicting unobserved user behavior data.


An Online Sparse Streaming Feature Selection Algorithm

arXiv.org Artificial Intelligence

Online streaming feature selection (OSFS), which conducts feature selection in an online manner, plays an important role in dealing with high-dimensional data. In many real applications such as intelligent healthcare platform, streaming feature always has some missing data, which raises a crucial challenge in conducting OSFS, i.e., how to establish the uncertain relationship between sparse streaming features and labels. Unfortunately, existing OSFS algorithms never consider such uncertain relationship. To fill this gap, we in this paper propose an online sparse streaming feature selection with uncertainty (OS2FSU) algorithm. OS2FSU consists of two main parts: 1) latent factor analysis is utilized to pre-estimate the missing data in sparse streaming features before con-ducting feature selection, and 2) fuzzy logic and neighborhood rough set are employed to alleviate the uncertainty between estimated streaming features and labels during conducting feature selection. In the experiments, OS2FSU is compared with five state-of-the-art OSFS algorithms on six real datasets. The results demonstrate that OS2FSU outperforms its competitors when missing data are encountered in OSFS.


Internal language model estimation through explicit context vector learning for attention-based encoder-decoder ASR

arXiv.org Artificial Intelligence

An end-to-end (E2E) speech recognition model implicitly learns a biased internal language model (ILM) during training. To fused an external LM during inference, the scores produced by the biased ILM need to be estimated and subtracted. In this paper we propose two novel approaches to estimate the biased ILM based on Listen-Attend-Spell (LAS) models. The simpler method is to replace the context vector of the LAS decoder at every time step with a learnable vector. The other more advanced method is to use a simple feed-forward network to directly map query vectors to context vectors, making the generation of the context vectors independent of the LAS encoder. Both the learnable vector and the mapping network are trained on the transcriptions of the training data to minimize the perplexity while all the other parameters of the LAS model is fixed. Experiments show that the ILMs estimated by the proposed methods achieve the lowest perplexity. In addition, they also significantly outperform the shallow fusion method and two previously proposed Internal Language Model Estimation (ILME) approaches on multiple datasets.


Asymmetric 3D Context Fusion for Universal Lesion Detection

arXiv.org Artificial Intelligence

Modeling 3D context is essential for high-performance 3D medical image analysis. Although 2D networks benefit from large-scale 2D supervised pretraining, it is weak in capturing 3D context. 3D networks are strong in 3D context yet lack supervised pretraining. As an emerging technique, \emph{3D context fusion operator}, which enables conversion from 2D pretrained networks, leverages the advantages of both and has achieved great success. Existing 3D context fusion operators are designed to be spatially symmetric, i.e., performing identical operations on each 2D slice like convolutions. However, these operators are not truly equivariant to translation, especially when only a few 3D slices are used as inputs. In this paper, we propose a novel asymmetric 3D context fusion operator (A3D), which uses different weights to fuse 3D context from different 2D slices. Notably, A3D is NOT translation-equivariant while it significantly outperforms existing symmetric context fusion operators without introducing large computational overhead. We validate the effectiveness of the proposed method by extensive experiments on DeepLesion benchmark, a large-scale public dataset for universal lesion detection from computed tomography (CT). The proposed A3D consistently outperforms symmetric context fusion operators by considerable margins, and establishes a new \emph{state of the art} on DeepLesion. To facilitate open research, our code and model in PyTorch are available at https://github.com/M3DV/AlignShift.