Goto

Collaborating Authors

 He, Yi


Multi-Modal Foundation Models for Computational Pathology: A Survey

arXiv.org Artificial Intelligence

Foundation models have emerged as a powerful paradigm in computational pathology (CPath), enabling scalable and generalizable analysis of histopathological images. While early developments centered on uni-modal models trained solely on visual data, recent advances have highlighted the promise of multi-modal foundation models that integrate heterogeneous data sources such as textual reports, structured domain knowledge, and molecular profiles. In this survey, we provide a comprehensive and up-to-date review of multi-modal foundation models in CPath, with a particular focus on models built upon hematoxylin and eosin (H&E) stained whole slide images (WSIs) and tile-level representations. We categorize 32 state-of-the-art multi-modal foundation models into three major paradigms: vision-language, vision-knowledge graph, and vision-gene expression. We further divide vision-language models into non-LLM-based and LLM-based approaches. Additionally, we analyze 28 available multi-modal datasets tailored for pathology, grouped into image-text pairs, instruction datasets, and image-other modality pairs. Our survey also presents a taxonomy of downstream tasks, highlights training and evaluation strategies, and identifies key challenges and future directions. We aim for this survey to serve as a valuable resource for researchers and practitioners working at the intersection of pathology and AI.


Tensor-Var: Variational Data Assimilation in Tensor Product Feature Space

arXiv.org Artificial Intelligence

Variational data assimilation estimates the dynamical system states by minimizing a cost function that fits the numerical models with observational data. The widely used method, four-dimensional variational assimilation (4D-Var), has two primary challenges: (1) computationally demanding for complex nonlinear systems and (2) relying on state-observation mappings, which are often not perfectly known. Deep learning (DL) has been used as a more expressive class of efficient model approximators to address these challenges. However, integrating such models into 4D-Var remains challenging due to their inherent nonlinearities and the lack of theoretical guarantees for consistency in assimilation results. In this paper, we propose Tensor-Var to address these challenges using kernel Conditional Mean Embedding (CME). Tensor-Var improves optimization efficiency by characterizing system dynamics and state-observation mappings as linear operators, leading to a convex cost function in the feature space. Furthermore, our method provides a new perspective to incorporate CME into 4D-Var, offering theoretical guarantees of consistent assimilation results between the original and feature spaces. To improve scalability, we propose a method to learn deep features (DFs) using neural networks within the Tensor-Var framework. Experiments on chaotic systems and global weather prediction with real-time observations show that Tensor-Var outperforms conventional and DL hybrid 4D-Var baselines in accuracy while achieving efficiency comparable to the static 3D-Var method.


How to Mitigate Information Loss in Knowledge Graphs for GraphRAG: Leveraging Triple Context Restoration and Query-Driven Feedback

arXiv.org Artificial Intelligence

Knowledge Graph (KG)-augmented Large Language Models (LLMs) have recently propelled significant advances in complex reasoning tasks, thanks to their broad domain knowledge and contextual awareness. Unfortunately, current methods often assume KGs to be complete, which is impractical given the inherent limitations of KG construction and the potential loss of contextual cues when converting unstructured text into entity-relation triples. In response, this paper proposes the Triple Context Restoration and Query-driven Feedback (TCR-QF) framework, which reconstructs the textual context underlying each triple to mitigate information loss, while dynamically refining the KG structure by iteratively incorporating query-relevant missing knowledge. Experiments on five benchmark question-answering datasets substantiate the effectiveness of TCR-QF in KG and LLM integration, where itachieves a 29.1% improvement in Exact Match and a 15.5% improvement in F1 over its state-of-the-art GraphRAG competitors.


End-to-end Graph Learning Approach for Cognitive Diagnosis of Student Tutorial

arXiv.org Artificial Intelligence

Cognitive diagnosis (CD) utilizes students' existing studying records to estimate their mastery of unknown knowledge concepts, which is vital for evaluating their learning abilities. Accurate CD is extremely challenging because CD is associated with complex relationships and mechanisms among students, knowledge concepts, studying records, etc. However, existing approaches loosely consider these relationships and mechanisms by a non-end-to-end learning framework, resulting in sub-optimal feature extractions and fusions for CD. Different from them, this paper innovatively proposes an End-to-end Graph Neural Networks-based Cognitive Diagnosis (EGNN-CD) model. EGNN-CD consists of three main parts: knowledge concept network (KCN), graph neural networks-based feature extraction (GNNFE), and cognitive ability prediction (CAP). First, KCN constructs CD-related interaction by comprehensively extracting physical information from students, exercises, and knowledge concepts. Second, a four-channel GNNFE is designed to extract high-order and individual features from the constructed KCN. Finally, CAP employs a multi-layer perceptron to fuse the extracted features to predict students' learning abilities in an end-to-end learning way. With such designs, the feature extractions and fusions are guaranteed to be comprehensive and optimal for CD. Extensive experiments on three real datasets demonstrate that our EGNN-CD achieves significantly higher accuracy than state-of-the-art models in CD.


LAECIPS: Large Vision Model Assisted Adaptive Edge-Cloud Collaboration for IoT-based Perception System

arXiv.org Artificial Intelligence

Recent large vision models (e.g., SAM) enjoy great potential to facilitate intelligent perception with high accuracy. Yet, the resource constraints in the IoT environment tend to limit such large vision models to be locally deployed, incurring considerable inference latency thereby making it difficult to support real-time applications, such as autonomous driving and robotics. Edge-cloud collaboration with large-small model co-inference offers a promising approach to achieving high inference accuracy and low latency. However, existing edge-cloud collaboration methods are tightly coupled with the model architecture and cannot adapt to the dynamic data drifts in heterogeneous IoT environments. To address the issues, we propose LAECIPS, a new edge-cloud collaboration framework. In LAECIPS, both the large vision model on the cloud and the lightweight model on the edge are plug-and-play. We design an edge-cloud collaboration strategy based on hard input mining, optimized for both high accuracy and low latency. We propose to update the edge model and its collaboration strategy with the cloud under the supervision of the large vision model, so as to adapt to the dynamic IoT data streams. Theoretical analysis of LAECIPS proves its feasibility. Experiments conducted in a robotic semantic segmentation system using real-world datasets show that LAECIPS outperforms its state-of-the-art competitors in accuracy, latency, and communication overhead while having better adaptability to dynamic environments.


Multi-Task Learning Using Uncertainty to Weigh Losses for Heterogeneous Face Attribute Estimation

arXiv.org Artificial Intelligence

Face images contain a wide variety of attribute information. In this paper, we propose a generalized framework for joint estimation of ordinal and nominal attributes based on information sharing. We tackle the correlation problem between heterogeneous attributes using hard parameter sharing of shallow features, and trade-off multiple loss functions by considering homoskedastic uncertainty for each attribute estimation task. This leads to optimal estimation of multiple attributes of the face and reduces the training cost of multitask learning. Experimental results on benchmarks with multiple face attributes show that the proposed approach has superior performance compared to state of the art. Finally, we discuss the bias issues arising from the proposed approach in face attribute estimation and validate its feasibility on edge systems.


Document AI: A Comparative Study of Transformer-Based, Graph-Based Models, and Convolutional Neural Networks For Document Layout Analysis

arXiv.org Artificial Intelligence

Document AI aims to automatically analyze documents by leveraging natural language processing and computer vision techniques. One of the major tasks of Document AI is document layout analysis, which structures document pages by interpreting the content and spatial relationships of layout, image, and text. This task can be image-centric, wherein the aim is to identify and label various regions such as authors and paragraphs, or text-centric, where the focus is on classifying individual words in a document. Although there are increasingly sophisticated methods for improving layout analysis, doubts remain about the extent to which their findings can be generalized to a broader context. Specifically, prior work developed systems based on very different architectures, such as transformer-based, graph-based, and CNNs. However, no work has mentioned the effectiveness of these models in a comparative analysis. Moreover, while language-independent Document AI models capable of knowledge transfer have been developed, it remains to be investigated to what degree they can effectively transfer knowledge. In this study, we aim to fill these gaps by conducting a comparative evaluation of state-of-the-art models in document layout analysis and investigating the potential of cross-lingual layout analysis by utilizing machine translation techniques.


Improving Frame-level Classifier for Word Timings with Non-peaky CTC in End-to-End Automatic Speech Recognition

arXiv.org Artificial Intelligence

In E2E systems, word timings can be estimated by the forced alignment results of character-level CTC models, where End-to-end (E2E) systems have shown comparable performance the CTC peak of the first character indicate the word start time to hybrid systems for automatic speech recognition and the CTC peak of the last character indicate the word end (ASR). Word timings, as a by-product of ASR, are essential time [9]. The CTC model cannot estimate word timings well in many applications, especially for subtitling and computeraided when the duration of the modeling unit is relatively long, e.g., pronunciation training. In this paper, we improve the Chinese characters. Because the blank probability of CTC frame-level classifier for word timings in E2E system by introducing model is dominant in almost all frames, and the non-blank probability label priors in connectionist temporal classification is only relatively high in few frames. This is called the (CTC) loss, which is adopted from prior works, and combining peaky behavior [10]. CTC-based alignments for word timings low-level Mel-scale filter banks with high-level ASR encoder can be improved by alleviating the peaky behavior [11, 12], output as input feature. On the internal Chinese corpus, but these methods have complicated regularization terms which the proposed method achieves 95.68%/94.18%


Random Utterance Concatenation Based Data Augmentation for Improving Short-video Speech Recognition

arXiv.org Artificial Intelligence

One of limitations in end-to-end automatic speech recognition (ASR) framework is its performance would be compromised if train-test utterance lengths are mismatched. In this paper, we propose an on-the-fly random utterance concatenation (RUC) based data augmentation method to alleviate train-test utterance length mismatch issue for short-video ASR task. Specifically, we are motivated by observations that our human-transcribed training utterances tend to be much shorter for short-video spontaneous speech (~3 seconds on average), while our test utterance generated from voice activity detection front-end is much longer (~10 seconds on average). Such a mismatch can lead to suboptimal performance. Empirically, it's observed the proposed RUC method significantly improves long utterance recognition without performance drop on short one. Overall, it achieves 5.72% word error rate reduction on average for 15 languages and improved robustness to various utterance length.


Towards Fair Machine Learning Software: Understanding and Addressing Model Bias Through Counterfactual Thinking

arXiv.org Artificial Intelligence

The increasing use of Machine Learning (ML) software can lead to unfair and unethical decisions, thus fairness bugs in software are becoming a growing concern. Addressing these fairness bugs often involves sacrificing ML performance, such as accuracy. To address this issue, we present a novel counterfactual approach that uses counterfactual thinking to tackle the root causes of bias in ML software. In addition, our approach combines models optimized for both performance and fairness, resulting in an optimal solution in both aspects. We conducted a thorough evaluation of our approach on 10 benchmark tasks using a combination of 5 performance metrics, 3 fairness metrics, and 15 measurement scenarios, all applied to 8 real-world datasets. The conducted extensive evaluations show that the proposed method significantly improves the fairness of ML software while maintaining competitive performance, outperforming state-of-the-art solutions in 84.6% of overall cases based on a recent benchmarking tool.