Goto

Collaborating Authors

 He, Xiangnan


A Survey of Generative Search and Recommendation in the Era of Large Language Models

arXiv.org Artificial Intelligence

With the information explosion on the Web, search and recommendation are foundational infrastructures to satisfying users' information needs. As the two sides of the same coin, both revolve around the same core research problem, matching queries with documents or users with items. In the recent few decades, search and recommendation have experienced synchronous technological paradigm shifts, including machine learning-based and deep learning-based paradigms. Recently, the superintelligent generative large language models have sparked a new paradigm in search and recommendation, i.e., generative search (retrieval) and recommendation, which aims to address the matching problem in a generative manner. In this paper, we provide a comprehensive survey of the emerging paradigm in information systems and summarize the developments in generative search and recommendation from a unified perspective. Rather than simply categorizing existing works, we abstract a unified framework for the generative paradigm and break down the existing works into different stages within this framework to highlight the strengths and weaknesses. And then, we distinguish generative search and recommendation with their unique challenges, identify open problems and future directions, and envision the next information-seeking paradigm.


Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients

arXiv.org Artificial Intelligence

Medication recommendation systems have gained significant attention in healthcare as a means of providing tailored and effective drug combinations based on patients' clinical information. However, existing approaches often suffer from fairness issues, as recommendations tend to be more accurate for patients with common diseases compared to those with rare conditions. In this paper, we propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed), which leverages the pretrain-finetune learning paradigm to enhance accuracy for rare diseases. RAREMed employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes. Additionally, it introduces two self-supervised pre-training tasks, namely Sequence Matching Prediction (SMP) and Self Reconstruction (SR), to learn specialized medication needs and interrelations among clinical codes. Experimental results on two real-world datasets demonstrate that RAREMed provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.


Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation

arXiv.org Artificial Intelligence

Optimization metrics are crucial for building recommendation systems at scale. However, an effective and efficient metric for practical use remains elusive. While Top-K ranking metrics are the gold standard for optimization, they suffer from significant computational overhead. Alternatively, the more efficient accuracy and AUC metrics often fall short of capturing the true targets of recommendation tasks, leading to suboptimal performance. To overcome this dilemma, we propose a new optimization metric, Lower-Left Partial AUC (LLPAUC), which is computationally efficient like AUC but strongly correlates with Top-K ranking metrics. Compared to AUC, LLPAUC considers only the partial area under the ROC curve in the Lower-Left corner to push the optimization focus on Top-K. We provide theoretical validation of the correlation between LLPAUC and Top-K ranking metrics and demonstrate its robustness to noisy user feedback. We further design an efficient point-wise recommendation loss to maximize LLPAUC and evaluate it on three datasets, validating its effectiveness and robustness.


EXGC: Bridging Efficiency and Explainability in Graph Condensation

arXiv.org Artificial Intelligence

Graph representation learning on vast datasets, like web data, has made significant strides. However, the associated computational and storage overheads raise concerns. In sight of this, Graph condensation (GCond) has been introduced to distill these large real datasets into a more concise yet information-rich synthetic graph. Despite acceleration efforts, existing GCond methods mainly grapple with efficiency, especially on expansive web data graphs. Hence, in this work, we pinpoint two major inefficiencies of current paradigms: (1) the concurrent updating of a vast parameter set, and (2) pronounced parameter redundancy. To counteract these two limitations correspondingly, we first (1) employ the Mean-Field variational approximation for convergence acceleration, and then (2) propose the objective of Gradient Information Bottleneck (GDIB) to prune redundancy. By incorporating the leading explanation techniques (e.g., GNNExplainer and GSAT) to instantiate the GDIB, our EXGC, the Efficient and eXplainable Graph Condensation method is proposed, which can markedly boost efficiency and inject explainability. Our extensive evaluations across eight datasets underscore EXGC's superiority and relevance. Code is available at https://github.com/MangoKiller/EXGC.


Alleviating Structural Distribution Shift in Graph Anomaly Detection

arXiv.org Artificial Intelligence

Graph anomaly detection (GAD) is a challenging binary classification problem due to its different structural distribution between anomalies and normal nodes -- abnormal nodes are a minority, therefore holding high heterophily and low homophily compared to normal nodes. Furthermore, due to various time factors and the annotation preferences of human experts, the heterophily and homophily can change across training and testing data, which is called structural distribution shift (SDS) in this paper. The mainstream methods are built on graph neural networks (GNNs), benefiting the classification of normals from aggregating homophilous neighbors, yet ignoring the SDS issue for anomalies and suffering from poor generalization. This work solves the problem from a feature view. We observe that the degree of SDS varies between anomalies and normal nodes. Hence to address the issue, the key lies in resisting high heterophily for anomalies meanwhile benefiting the learning of normals from homophily. We tease out the anomaly features on which we constrain to mitigate the effect of heterophilous neighbors and make them invariant. We term our proposed framework as Graph Decomposition Network (GDN). Extensive experiments are conducted on two benchmark datasets, and the proposed framework achieves a remarkable performance boost in GAD, especially in an SDS environment where anomalies have largely different structural distribution across training and testing environments. Codes are open-sourced in https://github.com/blacksingular/wsdm_GDN.


Towards 3D Molecule-Text Interpretation in Language Models

arXiv.org Artificial Intelligence

Language Models (LMs) have greatly influenced diverse domains. However, their inherent limitation in comprehending 3D molecular structures has considerably constrained their potential in the biomolecular domain. To bridge this gap, we focus on 3D molecule-text interpretation, and propose 3D-MoLM: 3D-Molecular Language Modeling. Specifically, 3D-MoLM enables an LM to interpret and analyze 3D molecules by equipping the LM with a 3D molecular encoder. This integration is achieved by a 3D molecule-text projector, bridging the 3D molecular encoder's representation space and the LM's input space. Moreover, to enhance 3D-MoLM's ability of cross-modal molecular understanding and instruction following, we meticulously curated a 3D molecule-centric instruction tuning dataset - 3D-MoIT. Through 3D molecule-text alignment and 3D molecule-centric instruction tuning, 3D-MoLM establishes an integration of 3D molecular encoder and LM. The advancement of Language Models (LMs) (Devlin et al., 2019; OpenAI, 2023b; Touvron et al., 2023a) has triggered a series of remarkable innovations across multiple disciplines (Zhao et al., 2023). Notably, LMs excel at text-based molecule understanding tasks, such as question-answering (QA) in the chemical and medical domains (Taylor et al., 2022), by pretraining on extensive biochemical literature. Recognizing the potential of LMs in harnessing extensive biochemical knowledge for molecule-relevant tasks, molecule-text modeling emerges as a new research direction (Edwards et al., 2021; 2022). Previous works have been dedicated to harmonizing texts with 1D molecular sequences (Zeng et al., 2022; Taylor et al., 2022) and 2D molecular graphs (Su et al., 2022; Liu et al., 2022a), aiding in tasks like molecule-text retrieval and molecule captioning. However, they mostly leave 3D molecular structures untouched, which are crucial to understanding molecular dynamics, protein-ligand interactions, enzymatic functions, and a range of other biomolecular phenomena (Karplus & McCammon, 2002; Jorgensen, 2004). To bridge this gap, we focus on 3D molecule-text interpretation, with the goal of enabling an LM to interpret and analyze 3D molecular structures through text generation. Given the recent successes of 3D molecular encoders in tasks like molecule property prediction, docking, and conformation prediction (Zhou et al., 2023; Lu et al., 2023; Fang et al., 2022), it is promising to incorporate one as an LM's perception module for 3D molecules.


Unleashing the Power of Graph Data Augmentation on Covariate Distribution Shift

arXiv.org Artificial Intelligence

The issue of distribution shifts is emerging as a critical concern in graph representation learning. From the perspective of invariant learning and stable learning, a recently well-established paradigm for out-of-distribution generalization, stable features of the graph are assumed to causally determine labels, while environmental features tend to be unstable and can lead to the two primary types of distribution shifts. The correlation shift is often caused by the spurious correlation between environmental features and labels that differs between the training and test data; the covariate shift often stems from the presence of new environmental features in test data. However, most strategies, such as invariant learning or graph augmentation, typically struggle with limited training environments or perturbed stable features, thus exposing limitations in handling the problem of covariate shift. To address this challenge, we propose a simple-yet-effective data augmentation strategy, Adversarial Invariant Augmentation (AIA), to handle the covariate shift on graphs. Specifically, given the training data, AIA aims to extrapolate and generate new environments, while concurrently preserving the original stable features during the augmentation process. Such a design equips the graph classification model with an enhanced capability to identify stable features in new environments, thereby effectively tackling the covariate shift in data. Extensive experiments with in-depth empirical analysis demonstrate the superiority of our approach. The implementation codes are publicly available at https://github.com/yongduosui/AIA.


Model-enhanced Contrastive Reinforcement Learning for Sequential Recommendation

arXiv.org Artificial Intelligence

Reinforcement learning (RL) has been widely applied in recommendation systems due to its potential in optimizing the long-term engagement of users. From the perspective of RL, recommendation can be formulated as a Markov decision process (MDP), where recommendation system (agent) can interact with users (environment) and acquire feedback (reward signals).However, it is impractical to conduct online interactions with the concern on user experience and implementation complexity, and we can only train RL recommenders with offline datasets containing limited reward signals and state transitions. Therefore, the data sparsity issue of reward signals and state transitions is very severe, while it has long been overlooked by existing RL recommenders.Worse still, RL methods learn through the trial-and-error mode, but negative feedback cannot be obtained in implicit feedback recommendation tasks, which aggravates the overestimation problem of offline RL recommender. To address these challenges, we propose a novel RL recommender named model-enhanced contrastive reinforcement learning (MCRL). On the one hand, we learn a value function to estimate the long-term engagement of users, together with a conservative value learning mechanism to alleviate the overestimation problem.On the other hand, we construct some positive and negative state-action pairs to model the reward function and state transition function with contrastive learning to exploit the internal structure information of MDP. Experiments demonstrate that the proposed method significantly outperforms existing offline RL and self-supervised RL methods with different representative backbone networks on two real-world datasets.


Attack Prompt Generation for Red Teaming and Defending Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content. Previous research constructs attack prompts via manual or automatic methods, which have their own limitations on construction cost and quality. To address these issues, we propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts. Specifically, considering the impressive capabilities of newly emerged LLMs, we propose an attack framework to instruct LLMs to mimic human-generated prompts through in-context learning. Furthermore, we propose a defense framework that fine-tunes victim LLMs through iterative interactions with the attack framework to enhance their safety against red teaming attacks. Extensive experiments on different LLMs validate the effectiveness of our proposed attack and defense frameworks. Additionally, we release a series of attack prompts datasets named SAP with varying sizes, facilitating the safety evaluation and enhancement of more LLMs. Our code and dataset is available on https://github.com/Aatrox103/SAP .


Understanding Contrastive Learning via Distributionally Robust Optimization

arXiv.org Artificial Intelligence

This study reveals the inherent tolerance of contrastive learning (CL) towards sampling bias, wherein negative samples may encompass similar semantics (\eg labels). However, existing theories fall short in providing explanations for this phenomenon. We bridge this research gap by analyzing CL through the lens of distributionally robust optimization (DRO), yielding several key insights: (1) CL essentially conducts DRO over the negative sampling distribution, thus enabling robust performance across a variety of potential distributions and demonstrating robustness to sampling bias; (2) The design of the temperature $\tau$ is not merely heuristic but acts as a Lagrange Coefficient, regulating the size of the potential distribution set; (3) A theoretical connection is established between DRO and mutual information, thus presenting fresh evidence for ``InfoNCE as an estimate of MI'' and a new estimation approach for $\phi$-divergence-based generalized mutual information. We also identify CL's potential shortcomings, including over-conservatism and sensitivity to outliers, and introduce a novel Adjusted InfoNCE loss (ADNCE) to mitigate these issues. It refines potential distribution, improving performance and accelerating convergence. Extensive experiments on various domains (image, sentence, and graphs) validate the effectiveness of the proposal. The code is available at \url{https://github.com/junkangwu/ADNCE}.