Goto

Collaborating Authors

 He, Weijie


Privacy-Preserving Hybrid Ensemble Model for Network Anomaly Detection: Balancing Security and Data Protection

arXiv.org Artificial Intelligence

Privacy-preserving network anomaly detection has become an essential area of research due to growing concerns over the protection of sensitive data. Traditional anomaly de- tection models often prioritize accuracy while neglecting the critical aspect of privacy. In this work, we propose a hybrid ensemble model that incorporates privacy-preserving techniques to address both detection accuracy and data protection. Our model combines the strengths of several machine learning algo- rithms, including K-Nearest Neighbors (KNN), Support Vector Machines (SVM), XGBoost, and Artificial Neural Networks (ANN), to create a robust system capable of identifying network anomalies while ensuring privacy. The proposed approach in- tegrates advanced preprocessing techniques that enhance data quality and address the challenges of small sample sizes and imbalanced datasets. By embedding privacy measures into the model design, our solution offers a significant advancement over existing methods, ensuring both enhanced detection performance and strong privacy safeguards.


Object Detection for Medical Image Analysis: Insights from the RT-DETR Model

arXiv.org Artificial Intelligence

Deep learning has emerged as a transformative approach for solving complex pattern recognition and object detection challenges. This paper focuses on the application of a novel detection framework based on the RT-DETR model for analyzing intricate image data, particularly in areas such as diabetic retinopathy detection. Diabetic retinopathy, a leading cause of vision loss globally, requires accurate and efficient image analysis to identify early-stage lesions. The proposed RT-DETR model, built on a Transformer-based architecture, excels at processing high-dimensional and complex visual data with enhanced robustness and accuracy. Comparative evaluations with models such as YOLOv5, YOLOv8, SSD, and DETR demonstrate that RT-DETR achieves superior performance across precision, recall, mAP50, and mAP50-95 metrics, particularly in detecting small-scale objects and densely packed targets. This study underscores the potential of Transformer-based models like RT-DETR for advancing object detection tasks, offering promising applications in medical imaging and beyond.


Deep Learning in Image Classification: Evaluating VGG19's Performance on Complex Visual Data

arXiv.org Artificial Intelligence

This study aims to explore the automatic classification method of pneumonia X-ray images based on VGG19 deep convolutional neural network, and evaluate its application effect in pneumonia diagnosis by comparing with classic models such as SVM, XGBoost, MLP, and ResNet50. The experimental results show that VGG19 performs well in multiple indicators such as accuracy (92%), AUC (0.95), F1 score (0.90) and recall rate (0.87), which is better than other comparison models, especially in image feature extraction and classification accuracy. Although ResNet50 performs well in some indicators, it is slightly inferior to VGG19 in recall rate and F1 score. Traditional machine learning models SVM and XGBoost are obviously limited in image classification tasks, especially in complex medical image analysis tasks, and their performance is relatively mediocre. The research results show that deep learning, especially convolutional neural networks, have significant advantages in medical image classification tasks, especially in pneumonia X-ray image analysis, and can provide efficient and accurate automatic diagnosis support. This research provides strong technical support for the early detection of pneumonia and the development of automated diagnosis systems and also lays the foundation for further promoting the application and development of automated medical image processing technology.


Deep Learning with HM-VGG: AI Strategies for Multi-modal Image Analysis

arXiv.org Artificial Intelligence

This study introduces the Hybrid Multi-modal VGG (HM-VGG) model, a cutting-edge deep learning approach for the early diagnosis of glaucoma. The HM-VGG model utilizes an attention mechanism to process Visual Field (VF) data, enabling the extraction of key features that are vital for identifying early signs of glaucoma. Despite the common reliance on large annotated datasets, the HM-VGG model excels in scenarios with limited data, achieving remarkable results with small sample sizes. The model's performance is underscored by its high metrics in Precision, Accuracy, and F1-Score, indicating its potential for real-world application in glaucoma detection. The paper also discusses the challenges associated with ophthalmic image analysis, particularly the difficulty of obtaining large volumes of annotated data. It highlights the importance of moving beyond single-modality data, such as VF or Optical Coherence Tomography (OCT) images alone, to a multimodal approach that can provide a richer, more comprehensive dataset. This integration of different data types is shown to significantly enhance diagnostic accuracy. The HM- VGG model offers a promising tool for doctors, streamlining the diagnostic process and improving patient outcomes. Furthermore, its applicability extends to telemedicine and mobile healthcare, making diagnostic services more accessible. The research presented in this paper is a significant step forward in the field of medical image processing and has profound implications for clinical ophthalmology.


Deep Learning for Medical Text Processing: BERT Model Fine-Tuning and Comparative Study

arXiv.org Artificial Intelligence

This paper proposes a medical literature summary generation method based on the BERT model to address the challenges brought by the current explosion of medical information. By fine-tuning and optimizing the BERT model, we develop an efficient summary generation system that can quickly extract key information from medical literature and generate coherent, accurate summaries. In the experiment, we compared various models, including Seq-Seq, Attention, Transformer, and BERT, and demonstrated that the improved BERT model offers significant advantages in the Rouge and Recall metrics. Furthermore, the results of this study highlight the potential of knowledge distillation techniques to further enhance model performance. The system has demonstrated strong versatility and efficiency in practical applications, offering a reliable tool for the rapid screening and analysis of medical literature.


Integrating Medical Imaging and Clinical Reports Using Multimodal Deep Learning for Advanced Disease Analysis

arXiv.org Artificial Intelligence

In this paper, an innovative multi-modal deep learning model is proposed to deeply integrate heterogeneous information from medical images and clinical reports. First, for medical images, convolutional neural networks were used to extract high-dimensional features and capture key visual information such as focal details, texture and spatial distribution. Secondly, for clinical report text, a two-way long and short-term memory network combined with an attention mechanism is used for deep semantic understanding, and key statements related to the disease are accurately captured. The two features interact and integrate effectively through the designed multi-modal fusion layer to realize the joint representation learning of image and text. In the empirical study, we selected a large medical image database covering a variety of diseases, combined with corresponding clinical reports for model training and validation. The proposed multimodal deep learning model demonstrated substantial superiority in the realms of disease classification, lesion localization, and clinical description generation, as evidenced by the experimental results.