Goto

Collaborating Authors

 He, Tieke


Norm Augmented Graph AutoEncoders for Link Prediction

arXiv.org Artificial Intelligence

Link Prediction (LP) is a crucial problem in graph-structured data. Graph Neural Networks (GNNs) have gained prominence in LP, with Graph AutoEncoders (GAEs) being a notable representation. However, our empirical findings reveal that GAEs' LP performance suffers heavily from the long-tailed node degree distribution, i.e., low-degree nodes tend to exhibit inferior LP performance compared to high-degree nodes. \emph{What causes this degree-related bias, and how can it be mitigated?} In this study, we demonstrate that the norm of node embeddings learned by GAEs exhibits variation among nodes with different degrees, underscoring its central significance in influencing the final performance of LP. Specifically, embeddings with larger norms tend to guide the decoder towards predicting higher scores for positive links and lower scores for negative links, thereby contributing to superior performance. This observation motivates us to improve GAEs' LP performance on low-degree nodes by increasing their embedding norms, which can be implemented simply yet effectively by introducing additional self-loops into the training objective for low-degree nodes. This norm augmentation strategy can be seamlessly integrated into existing GAE methods with light computational cost. Extensive experiments on various datasets and GAE methods show the superior performance of norm-augmented GAEs.


Learning Accurate, Efficient, and Interpretable MLPs on Multiplex Graphs via Node-wise Multi-View Ensemble Distillation

arXiv.org Artificial Intelligence

Multiplex graphs, with multiple edge types (graph views) among common nodes, provide richer structural semantics and better modeling capabilities. Multiplex Graph Neural Networks (MGNNs), typically comprising view-specific GNNs and a multi-view integration layer, have achieved advanced performance in various downstream tasks. However, their reliance on neighborhood aggregation poses challenges for deployment in latency-sensitive applications. Motivated by recent GNNto-MLP knowledge distillation frameworks, we propose Multiplex Graph-Free Neural Networks (MGFNN and MGFNN+) to combine MGNNs' superior performance and MLPs' efficient inference via knowledge distillation. MGFNN directly trains student MLPs with node features as input and soft labels from teacher MGNNs as targets. MGFNN+ further employs a low-rank approximation-based reparameterization to learn node-wise coefficients, enabling adaptive knowledge ensemble from each view-specific GNN. This node-wise multi-view ensemble distillation strategy allows student MLPs to learn more informative multiplex semantic knowledge for different nodes. Experiments show that MGFNNs achieve average accuracy improvements of about 10% over vanilla MLPs and perform comparably or even better to teacher MGNNs (accurate); MGFNNs achieve a 35.40 -89.14 speedup in inference over MGNNs (efficient); MGFNN+ adaptively assigns different coefficients for multi-view ensemble distillation regarding different nodes (interpretable).


Multi-Scale Heterogeneous Text-Attributed Graph Datasets From Diverse Domains

arXiv.org Artificial Intelligence

Heterogeneous Text-Attributed Graphs (HTAGs), where different types of entities are not only associated with texts but also connected by diverse relationships, have gained widespread popularity and application across various domains. However, current research on text-attributed graph learning predominantly focuses on homogeneous graphs, which feature a single node and edge type, thus leaving a gap in understanding how methods perform on HTAGs. One crucial reason is the lack of comprehensive HTAG datasets that offer original textual content and span multiple domains of varying sizes. To this end, we introduce a collection of challenging and diverse benchmark datasets for realistic and reproducible evaluation of machine learning models on HTAGs. Our HTAG datasets are multi-scale, span years in duration, and cover a wide range of domains, including movie, community question answering, academic, literature, and patent networks. We further conduct benchmark experiments on these datasets with various graph neural networks. All source data, dataset construction codes, processed HTAGs, data loaders, benchmark codes, and evaluation setup are publicly available at GitHub and Hugging Face.


Teaching MLPs to Master Heterogeneous Graph-Structured Knowledge for Efficient and Accurate Inference

arXiv.org Artificial Intelligence

Heterogeneous Graph Neural Networks (HGNNs) have achieved promising results in various heterogeneous graph learning tasks, owing to their superiority in capturing the intricate relationships and diverse relational semantics inherent in heterogeneous graph structures. However, the neighborhood-fetching latency incurred by structure dependency in HGNNs makes it challenging to deploy for latency-constrained applications that require fast inference. Inspired by recent GNN-to-MLP knowledge distillation frameworks, we introduce HG2M and HG2M+ to combine both HGNN's superior performance and MLP's efficient inference. HG2M directly trains student MLPs with node features as input and soft labels from teacher HGNNs as targets, and HG2M+ further distills reliable and heterogeneous semantic knowledge into student MLPs through reliable node distillation and reliable meta-path distillation. Experiments conducted on six heterogeneous graph datasets show that despite lacking structural dependencies, HG2Ms can still achieve competitive or even better performance than HGNNs and significantly outperform vanilla MLPs. Moreover, HG2Ms demonstrate a 379.24$\times$ speedup in inference over HGNNs on the large-scale IGB-3M-19 dataset, showcasing their ability for latency-sensitive deployments.


Negative-Free Self-Supervised Gaussian Embedding of Graphs

arXiv.org Artificial Intelligence

Graph Contrastive Learning (GCL) has recently emerged as a promising graph self-supervised learning framework for learning discriminative node representations without labels. The widely adopted objective function of GCL benefits from two key properties: \emph{alignment} and \emph{uniformity}, which align representations of positive node pairs while uniformly distributing all representations on the hypersphere. The uniformity property plays a critical role in preventing representation collapse and is achieved by pushing apart augmented views of different nodes (negative pairs). As such, existing GCL methods inherently rely on increasing the quantity and quality of negative samples, resulting in heavy computational demands, memory overhead, and potential class collision issues. In this study, we propose a negative-free objective to achieve uniformity, inspired by the fact that points distributed according to a normalized isotropic Gaussian are uniformly spread across the unit hypersphere. Therefore, we can minimize the distance between the distribution of learned representations and the isotropic Gaussian distribution to promote the uniformity of node representations. Our method also distinguishes itself from other approaches by eliminating the need for a parameterized mutual information estimator, an additional projector, asymmetric structures, and, crucially, negative samples. Extensive experiments over seven graph benchmarks demonstrate that our proposal achieves competitive performance with fewer parameters, shorter training times, and lower memory consumption compared to existing GCL methods.


ROIC-DM: Robust Text Inference and Classification via Diffusion Model

arXiv.org Artificial Intelligence

While language models have made many milestones in text inference and classification tasks, they remain susceptible to adversarial attacks that can lead to unforeseen outcomes. Existing works alleviate this problem by equipping language models with defense patches. However, these defense strategies often rely on impractical assumptions or entail substantial sacrifices in model performance. Consequently, enhancing the resilience of the target model using such defense mechanisms is a formidable challenge. This paper introduces an innovative model for robust text inference and classification, built upon diffusion models (ROIC-DM). Benefiting from its training involving denoising stages, ROIC-DM inherently exhibits greater robustness compared to conventional language models. Moreover, ROIC-DM can attain comparable, and in some cases, superior performance to language models, by effectively incorporating them as advisory components. Extensive experiments conducted with several strong textual adversarial attacks on three datasets demonstrate that (1) ROIC-DM outperforms traditional language models in robustness, even when the latter are fortified with advanced defense mechanisms; (2) ROIC-DM can achieve comparable and even better performance than traditional language models by using them as advisors.


Unified Question Generation with Continual Lifelong Learning

arXiv.org Artificial Intelligence

Question Generation (QG), as a challenging Natural Language Processing task, aims at generating questions based on given answers and context. Existing QG methods mainly focus on building or training models for specific QG datasets. These works are subject to two major limitations: (1) They are dedicated to specific QG formats (e.g., answer-extraction or multi-choice QG), therefore, if we want to address a new format of QG, a re-design of the QG model is required. (2) Optimal performance is only achieved on the dataset they were just trained on. As a result, we have to train and keep various QG models for different QG datasets, which is resource-intensive and ungeneralizable. To solve the problems, we propose a model named Unified-QG based on lifelong learning techniques, which can continually learn QG tasks across different datasets and formats. Specifically, we first build a format-convert encoding to transform different kinds of QG formats into a unified representation. Then, a method named \emph{STRIDER} (\emph{S}imilari\emph{T}y \emph{R}egular\emph{I}zed \emph{D}ifficult \emph{E}xample \emph{R}eplay) is built to alleviate catastrophic forgetting in continual QG learning. Extensive experiments were conducted on $8$ QG datasets across $4$ QG formats (answer-extraction, answer-abstraction, multi-choice, and boolean QG) to demonstrate the effectiveness of our approach. Experimental results demonstrate that our Unified-QG can effectively and continually adapt to QG tasks when datasets and formats vary. In addition, we verify the ability of a single trained Unified-QG model in improving $8$ Question Answering (QA) systems' performance through generating synthetic QA data.