Goto

Collaborating Authors

 He, Shwai


Capacity-Aware Inference: Mitigating the Straggler Effect in Mixture of Experts

arXiv.org Artificial Intelligence

The Mixture of Experts (MoE) is an effective architecture for scaling large language models by leveraging sparse expert activation, optimizing the trade-off between performance and efficiency. However, under expert parallelism, MoE suffers from inference inefficiencies due to imbalanced token-to-expert assignment, where some experts are overloaded while others remain underutilized. This imbalance leads to poor resource utilization and increased latency, as the most burdened expert dictates the overall delay, a phenomenon we define as the \textbf{\textit{Straggler Effect}}. To mitigate this, we propose Capacity-Aware Inference, including two key techniques: (1) \textbf{\textit{Capacity-Aware Token Drop}}, which discards overloaded tokens to regulate the maximum latency of MoE, and (2) \textbf{\textit{Capacity-Aware Token Reroute}}, which reallocates overflowed tokens to underutilized experts, balancing the token distribution. These techniques collectively optimize both high-load and low-load expert utilization, leading to a more efficient MoE inference pipeline. Extensive experiments demonstrate the effectiveness of our methods, showing significant improvements in inference efficiency, e.g., 0.2\% average performance increase and a 1.94$\times$ inference speedup on Mixtral-8$\times$7B-Instruct.


Towards counterfactual fairness thorough auxiliary variables

arXiv.org Machine Learning

The challenge of balancing fairness and predictive accuracy in machine learning models, especially when sensitive attributes such as race, gender, or age are considered, has motivated substantial research in recent years. Counterfactual fairness ensures that predictions remain consistent across counterfactual variations of sensitive attributes, which is a crucial concept in addressing societal biases. However, existing counterfactual fairness approaches usually overlook intrinsic information about sensitive features, limiting their ability to achieve fairness while simultaneously maintaining performance. To tackle this challenge, we introduce EXOgenous Causal reasoning (EXOC), a novel causal reasoning framework motivated by exogenous variables. It leverages auxiliary variables to uncover intrinsic properties that give rise to sensitive attributes. Our framework explicitly defines an auxiliary node and a control node that contribute to counterfactual fairness and control the information flow within the model. Our evaluation, conducted on synthetic and real-world datasets, validates EXOC's superiority, showing that it outperforms state-of-the-art approaches in achieving counterfactual fairness.


Router-Tuning: A Simple and Effective Approach for Enabling Dynamic-Depth in Transformers

arXiv.org Artificial Intelligence

Traditional transformer models often allocate a fixed amount of computational resources to every input token, leading to inefficient and unnecessary computation. To address this, the Mixture of Depths (MoD) was introduced to dynamically adjust the computational depth by skipping less important layers. Despite its promise, current MoD approaches remain under-explored and face two main challenges: (1) \textit{high training costs due to the need to train the entire model along with the routers that determine which layers to skip}, and (2) \textit{the risk of performance degradation when important layers are bypassed}. In response to the first issue, we propose Router-Tuning, a method that fine-tunes only the router on a small dataset, drastically reducing the computational overhead associated with full model training. For the second challenge, we propose MindSkip, which deploys \textit{Attention with Dynamic Depths}. This method preserves the model's performance while significantly enhancing computational and memory efficiency. Extensive experiments demonstrate that our approach delivers competitive results while dramatically improving the computation efficiency, e.g., 21\% speedup and only a 0.2\% performance drop. The code is released at \url{https://github.com/CASE-Lab-UMD/Router-Tuning}.


What Matters in Transformers? Not All Attention is Needed

arXiv.org Artificial Intelligence

Scaling Transformer-based large language models (LLMs) has demonstrated promising performance across various tasks. However, this scaling also introduces redundant structures, posing challenges for real-world deployment. Despite some recognition of redundancy in LLMs, the variability of redundancy across different structures, such as MLP and Attention layers, is under-explored. In this work, we investigate the varying redundancy across different modules within Transformers, including Blocks, MLP, and Attention layers, using a similarity-based metric. This metric operates on the premise that redundant structures produce outputs highly similar to their inputs. Surprisingly, while attention layers are essential for transformers and distinguish them from other mainstream architectures, we found that a large proportion of attention layers exhibit excessively high similarity and can be safely pruned without degrading performance, leading to reduced memory and computation costs. Additionally, we further propose a method that jointly drops Attention and MLP layers, achieving improved performance and dropping ratios. Extensive experiments demonstrate the effectiveness of our methods, e.g., Llama-3-70B maintains comparable performance even after pruning half of the attention layers. Our findings provide valuable insights for future network architecture design. The code will be released at: \url{https://github.com/Shwai-He/LLM-Drop}.


Rethinking Pruning for Vision-Language Models: Strategies for Effective Sparsity and Performance Restoration

arXiv.org Artificial Intelligence

Vision-Language Models (VLMs) integrate information from multiple modalities and have shown remarkable success across various tasks. However, deploying large-scale VLMs in resource-constrained scenarios is challenging. Pruning followed by finetuning offers a potential solution but remains underexplored for VLMs. This study addresses two key questions: how to distribute sparsity across different modality-specific models, and how to restore the performance of pruned sparse VLMs. Our preliminary studies identified two effective pruning settings: applying the same sparsity to both vision and language models, and pruning only the language models. While LoRA finetuning aims to restore sparse models, it faces challenges due to incompatibility with sparse models, disrupting the pruned sparsity. To overcome these issues, we propose SparseLoRA, which applies sparsity directly to LoRA weights. Our experimental results demonstrate significant improvements, including an 11.3\% boost under 2:4 sparsity and a 47.6\% enhancement under unstructured 70\% sparsity. Code is released at: \url{https://github.com/Shwai-He/VLM-Compression}.


Demystifying the Compression of Mixture-of-Experts Through a Unified Framework

arXiv.org Artificial Intelligence

Scaling large language models has revolutionized the performance across diverse domains, yet the continual growth in model size poses significant challenges for real-world deployment. The Mixture of Experts (MoE) approach addresses this by dynamically selecting and activating only a subset of experts, significantly reducing computational costs while maintaining high performance. However, MoE introduces potential redundancy (e.g., parameters) and extra costs (e.g., communication overhead). Despite numerous compression techniques developed for mitigating the redundancy in dense models, the compression of MoE remains under-explored. We first bridge this gap with a cutting-edge unified framework that not only seamlessly integrates mainstream compression methods but also helps systematically understand MoE compression. This framework approaches compression from two perspectives: Expert Slimming which compresses individual experts and Expert Trimming which removes structured modules. Within this framework, we explore the optimization space unexplored by existing methods,and further introduce aggressive Expert Trimming techniques, i.e., Layer Drop and Block Drop, to eliminate redundancy at larger scales. Based on these insights,we present a comprehensive recipe to guide practitioners in compressing MoE effectively. Extensive experimental results demonstrate the effectiveness of the compression methods under our framework and the proposed recipe, achieving a 6.05x speedup and only 20.0GB memory usage while maintaining over 92% of performance on Mixtral-8x7B. Code is released at \url{https://github.com/DaizeDong/Unified-MoE-Compression}.


Loki: Low-Rank Keys for Efficient Sparse Attention

arXiv.org Artificial Intelligence

Inference on large language models can be expensive in terms of the compute and memory costs involved, especially when long sequence lengths are used. In particular, the self-attention mechanism used in such models contributes significantly to these costs, which has resulted in several recent works that propose sparse attention approximations for inference. In this work, we propose to approximate the self-attention computation by focusing on the dimensionality of key vectors computed in the attention block. Our analysis reveals that the key vectors lie in a significantly lower-dimensional space, consistently across several datasets and models. Exploiting this observation, we propose Loki, a novel sparse attention method that ranks and selects tokens in the KV-cache based on attention scores computed in low-dimensional space. Our evaluations show that Loki is able to maintain the efficacy of the models better than other popular approximation methods, while speeding up the attention computation due to reduced data movement (load/store) and compute costs.


Reformatted Alignment

arXiv.org Artificial Intelligence

The quality of finetuning data is crucial for aligning large language models (LLMs) with human values. Current methods to improve data quality are either labor-intensive or prone to factual errors caused by LLM hallucinations. This paper explores elevating the quality of existing instruction data to better align with human values, introducing a simple and effective approach named ReAlign, which reformats the responses of instruction data into a format that better aligns with pre-established criteria and the collated evidence. This approach minimizes human annotation, hallucination, and the difficulty in scaling, remaining orthogonal to existing alignment techniques. Experimentally, ReAlign significantly boosts the general alignment ability, math reasoning, factuality, and readability of the LLMs. Encouragingly, without introducing any additional data or advanced training techniques, and merely by reformatting the response, LLaMA-2-13B's mathematical reasoning ability on GSM8K can be improved from 46.77% to 56.63% in accuracy. Additionally, a mere 5% of ReAlign data yields a 67% boost in general alignment ability measured by the Alpaca dataset. This work highlights the need for further research into the science and mechanistic interpretability of LLMs. We have made the associated code and data publicly accessible to support future studies at https://github.com/GAIR-NLP/ReAlign.


Selective Reflection-Tuning: Student-Selected Data Recycling for LLM Instruction-Tuning

arXiv.org Artificial Intelligence

Instruction tuning is critical to large language models (LLMs) for achieving better instruction following and task adaptation capabilities but its success heavily relies on the training data quality. Many recent methods focus on improving the data quality but often overlook the compatibility of the data with the student model being finetuned. This paper introduces Selective Reflection-Tuning, a novel paradigm that synergizes a teacher LLM's reflection and introspection for improving existing data quality with the data selection capability of the student LLM, to automatically refine existing instruction-tuning data. This teacher-student collaboration produces high-quality and student-compatible instruction-response pairs, resulting in sample-efficient instruction tuning and LLMs of superior performance. Selective Reflection-Tuning is a data augmentation and synthesis that generally improves LLM finetuning and self-improvement without collecting brand-new data. We apply our method to Alpaca and WizardLM data and achieve much stronger and top-tier 7B and 13B LLMs. Our codes, models, and data will be released at https://github.com/tianyi-lab/Reflection_Tuning.


Superfiltering: Weak-to-Strong Data Filtering for Fast Instruction-Tuning

arXiv.org Artificial Intelligence

Instruction tuning is critical to improve LLMs but usually suffers from low-quality and redundant data. Data filtering for instruction tuning has proved important in improving both the efficiency and performance of the tuning process. But it also leads to extra cost and computation due to the involvement of LLMs in this process. To reduce the filtering cost, we study Superfiltering: Can we use a smaller and weaker model to select data for finetuning a larger and stronger model? Despite the performance gap between weak and strong language models, we find their highly consistent capability to perceive instruction difficulty and data selection results. This enables us to use a much smaller and more efficient model to filter the instruction data used to train a larger language model. Not only does it largely speed up the data filtering, but the filtered-data-finetuned LLM achieves even better performance on standard benchmarks. Extensive experiments validate the efficacy and efficiency of our approach.