He, Shengfeng
Knowledge Bridger: Towards Training-free Missing Multi-modality Completion
Ke, Guanzhou, He, Shengfeng, Wang, Xiao Li, Wang, Bo, Chao, Guoqing, Zhang, Yuanyang, Xie, Yi, Su, HeXing
Previous successful approaches to missing modality completion rely on carefully designed fusion techniques and extensive pre-training on complete data, which can limit their generalizability in out-of-domain (OOD) scenarios. In this study, we pose a new challenge: can we develop a missing modality completion model that is both resource-efficient and robust to OOD generalization? To address this, we present a training-free framework for missing modality completion that leverages large multimodal models (LMMs). Our approach, termed the "Knowledge Bridger", is modality-agnostic and integrates generation and ranking of missing modalities. By defining domain-specific priors, our method automatically extracts structured information from available modalities to construct knowledge graphs. These extracted graphs connect the missing modality generation and ranking modules through the LMM, resulting in high-quality imputations of missing modalities. Experimental results across both general and medical domains show that our approach consistently outperforms competing methods, including in OOD generalization. Additionally, our knowledge-driven generation and ranking techniques demonstrate superiority over variants that directly employ LMMs for generation and ranking, offering insights that may be valuable for applications in other domains.
Rotation-Adaptive Point Cloud Domain Generalization via Intricate Orientation Learning
Liu, Bangzhen, Zheng, Chenxi, Xu, Xuemiao, Xu, Cheng, Zhang, Huaidong, He, Shengfeng
The vulnerability of 3D point cloud analysis to unpredictable rotations poses an open yet challenging problem: orientation-aware 3D domain generalization. Cross-domain robustness and adaptability of 3D representations are crucial but not easily achieved through rotation augmentation. Motivated by the inherent advantages of intricate orientations in enhancing generalizability, we propose an innovative rotation-adaptive domain generalization framework for 3D point cloud analysis. Our approach aims to alleviate orientational shifts by leveraging intricate samples in an iterative learning process. Specifically, we identify the most challenging rotation for each point cloud and construct an intricate orientation set by optimizing intricate orientations. Subsequently, we employ an orientation-aware contrastive learning framework that incorporates an orientation consistency loss and a margin separation loss, enabling effective learning of categorically discriminative and generalizable features with rotation consistency. Extensive experiments and ablations conducted on 3D cross-domain benchmarks firmly establish the state-of-the-art performance of our proposed approach in the context of orientation-aware 3D domain generalization.
Drag Your Noise: Interactive Point-based Editing via Diffusion Semantic Propagation
Liu, Haofeng, Xu, Chenshu, Yang, Yifei, Zeng, Lihua, He, Shengfeng
Point-based interactive editing serves as an essential tool to complement the controllability of existing generative models. A concurrent work, DragDiffusion, updates the diffusion latent map in response to user inputs, causing global latent map alterations. This results in imprecise preservation of the original content and unsuccessful editing due to gradient vanishing. In contrast, we present DragNoise, offering robust and accelerated editing without retracing the latent map. The core rationale of DragNoise lies in utilizing the predicted noise output of each U-Net as a semantic editor. This approach is grounded in two critical observations: firstly, the bottleneck features of U-Net inherently possess semantically rich features ideal for interactive editing; secondly, high-level semantics, established early in the denoising process, show minimal variation in subsequent stages. Leveraging these insights, DragNoise edits diffusion semantics in a single denoising step and efficiently propagates these changes, ensuring stability and efficiency in diffusion editing. Comparative experiments reveal that DragNoise achieves superior control and semantic retention, reducing the optimization time by over 50% compared to DragDiffusion. Our codes are available at https://github.com/haofengl/DragNoise.
DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers
Ma, Xiao, He, Shengfeng, Qiao, Hezhe, Ma, Dong
Enabling efficient and accurate deep neural network (DNN) inference on microcontrollers is non-trivial due to the constrained on-chip resources. Current methodologies primarily focus on compressing larger models yet at the expense of model accuracy. In this paper, we rethink the problem from the inverse perspective by constructing small/weak models directly and improving their accuracy. Thus, we introduce DiTMoS, a novel DNN training and inference framework with a selector-classifiers architecture, where the selector routes each input sample to the appropriate classifier for classification. DiTMoS is grounded on a key insight: a composition of weak models can exhibit high diversity and the union of them can significantly boost the accuracy upper bound. To approach the upper bound, DiTMoS introduces three strategies including diverse training data splitting to increase the classifiers' diversity, adversarial selector-classifiers training to ensure synergistic interactions thereby maximizing their complementarity, and heterogeneous feature aggregation to improve the capacity of classifiers. We further propose a network slicing technique to alleviate the extra memory overhead incurred by feature aggregation. We deploy DiTMoS on the Neucleo STM32F767ZI board and evaluate it based on three time-series datasets for human activity recognition, keywords spotting, and emotion recognition, respectively. The experiment results manifest that: (a) DiTMoS achieves up to 13.4% accuracy improvement compared to the best baseline; (b) network slicing almost completely eliminates the memory overhead incurred by feature aggregation with a marginal increase of latency.
Active Matting
Yang, Xin, Xu, Ke, Chen, Shaozhe, He, Shengfeng, Yin, Baocai Yin, Lau, Rynson
Image matting is an ill-posed problem. It requires a user input trimap or some strokes to obtain an alpha matte of the foreground object. A fine user input is essential to obtain a good result, which is either time consuming or suitable for experienced users who know where to place the strokes. In this paper, we explore the intrinsic relationship between the user input and the matting algorithm to address the problem of where and when the user should provide the input. Our aim is to discover the most informative sequence of regions for user input in order to produce a good alpha matte with minimum labeling efforts. To this end, we propose an active matting method with recurrent reinforcement learning. The proposed framework involves human in the loop by sequentially detecting informative regions for trivial human judgement. Comparing to traditional matting algorithms, the proposed framework requires much less efforts, and can produce satisfactory results with just 10 regions. Through extensive experiments, we show that the proposed model reduces user efforts significantly and achieves comparable performance to dense trimaps in a user-friendly manner. We further show that the learned informative knowledge can be generalized across different matting algorithms.
Active Matting
Yang, Xin, Xu, Ke, Chen, Shaozhe, He, Shengfeng, Yin, Baocai Yin, Lau, Rynson
Image matting is an ill-posed problem. It requires a user input trimap or some strokes to obtain an alpha matte of the foreground object. A fine user input is essential to obtain a good result, which is either time consuming or suitable for experienced users who know where to place the strokes. In this paper, we explore the intrinsic relationship between the user input and the matting algorithm to address the problem of where and when the user should provide the input. Our aim is to discover the most informative sequence of regions for user input in order to produce a good alpha matte with minimum labeling efforts. To this end, we propose an active matting method with recurrent reinforcement learning. The proposed framework involves human in the loop by sequentially detecting informative regions for trivial human judgement. Comparing to traditional matting algorithms, the proposed framework requires much less efforts, and can produce satisfactory results with just 10 regions. Through extensive experiments, we show that the proposed model reduces user efforts significantly and achieves comparable performance to dense trimaps in a user-friendly manner. We further show that the learned informative knowledge can be generalized across different matting algorithms.