He, Rui
Trajectory Planning for Autonomous Driving in Unstructured Scenarios Based on Graph Neural Network and Numerical Optimization
Zhang, Sumin, Li, Kuo, He, Rui, Meng, Zhiwei, Chang, Yupeng, Jin, Xiaosong, Bai, Ri
In unstructured environments, obstacles are diverse and lack lane markings, making trajectory planning for intelligent vehicles a challenging task. Traditional trajectory planning methods typically involve multiple stages, including path planning, speed planning, and trajectory optimization. These methods require the manual design of numerous parameters for each stage, resulting in significant workload and computational burden. While end-to-end trajectory planning methods are simple and efficient, they often fail to ensure that the trajectory meets vehicle dynamics and obstacle avoidance constraints in unstructured scenarios. Therefore, this paper proposes a novel trajectory planning method based on Graph Neural Networks (GNN) and numerical optimization. The proposed method consists of two stages: (1) initial trajectory prediction using the GNN, (2) trajectory optimization using numerical optimization. First, the graph neural network processes the environment information and predicts a rough trajectory, replacing traditional path and speed planning. This predicted trajectory serves as the initial solution for the numerical optimization stage, which optimizes the trajectory to ensure compliance with vehicle dynamics and obstacle avoidance constraints. We conducted simulation experiments to validate the feasibility of the proposed algorithm and compared it with other mainstream planning algorithms. The results demonstrate that the proposed method simplifies the trajectory planning process and significantly improves planning efficiency.
Large Language Models can be Guided to Evade AI-Generated Text Detection
Lu, Ning, Liu, Shengcai, He, Rui, Wang, Qi, Ong, Yew-Soon, Tang, Ke
Large language models (LLMs) have shown remarkable performance in various tasks and have been extensively utilized by the public. However, the increasing concerns regarding the misuse of LLMs, such as plagiarism and spamming, have led to the development of multiple detectors, including fine-tuned classifiers and statistical methods. In this study, we equip LLMs with prompts, rather than relying on an external paraphraser, to evaluate the vulnerability of these detectors. We propose a novel Substitution-based In-Context example Optimization method (SICO) to automatically construct prompts for evading the detectors. SICO is cost-efficient as it requires only 40 human-written examples and a limited number of LLM inferences to generate a prompt. Moreover, once a task-specific prompt has been constructed, it can be universally used against a wide range of detectors. Extensive experiments across three real-world tasks demonstrate that SICO significantly outperforms the paraphraser baselines and enables GPT-3.5 to successfully evade six detectors, decreasing their AUC by 0.5 on average. Furthermore, a comprehensive human evaluation as well as a validation experiment in the wild show that the SICO-generated text achieves human-level readability and task completion rates. Finally, the strong performance of SICO exhibits its potential as a reliable evaluation tool for future detectors.
No Fear of Classifier Biases: Neural Collapse Inspired Federated Learning with Synthetic and Fixed Classifier
Li, Zexi, Shang, Xinyi, He, Rui, Lin, Tao, Wu, Chao
Data heterogeneity is an inherent challenge that hinders the performance of federated learning (FL). Recent studies have identified the biased classifiers of local models as the key bottleneck. Previous attempts have used classifier calibration after FL training, but this approach falls short in improving the poor feature representations caused by training-time classifier biases. Resolving the classifier bias dilemma in FL requires a full understanding of the mechanisms behind the classifier. Recent advances in neural collapse have shown that the classifiers and feature prototypes under perfect training scenarios collapse into an optimal structure called simplex equiangular tight frame (ETF). Building on this neural collapse insight, we propose a solution to the FL's classifier bias problem by utilizing a synthetic and fixed ETF classifier during training. The optimal classifier structure enables all clients to learn unified and optimal feature representations even under extremely heterogeneous data. We devise several effective modules to better adapt the ETF structure in FL, achieving both high generalization and personalization. Extensive experiments demonstrate that our method achieves state-of-the-art performances on CIFAR-10, CIFAR-100, and Tiny-ImageNet.
Multi-Domain Learning From Insufficient Annotations
He, Rui, Liu, Shengcai, Wu, Jiahao, He, Shan, Tang, Ke
Multi-domain learning (MDL) refers to simultaneously constructing a model or a set of models on datasets collected from different domains. Conventional approaches emphasize domain-shared information extraction and domain-private information preservation, following the shared-private framework (SP models), which offers significant advantages over single-domain learning. However, the limited availability of annotated data in each domain considerably hinders the effectiveness of conventional supervised MDL approaches in real-world applications. In this paper, we introduce a novel method called multi-domain contrastive learning (MDCL) to alleviate the impact of insufficient annotations by capturing both semantic and structural information from both labeled and unlabeled data.Specifically, MDCL comprises two modules: inter-domain semantic alignment and intra-domain contrast. The former aims to align annotated instances of the same semantic category from distinct domains within a shared hidden space, while the latter focuses on learning a cluster structure of unlabeled instances in a private hidden space for each domain. MDCL is readily compatible with many SP models, requiring no additional model parameters and allowing for end-to-end training. Experimental results across five textual and image multi-domain datasets demonstrate that MDCL brings noticeable improvement over various SP models.Furthermore, MDCL can further be employed in multi-domain active learning (MDAL) to achieve a superior initialization, eventually leading to better overall performance.
Perturbation-Based Two-Stage Multi-Domain Active Learning
He, Rui, Dai, Zeyu, He, Shan, Tang, Ke
In multi-domain learning (MDL) scenarios, high labeling effort is required due to the complexity of collecting data from various domains. Active Learning (AL) presents an encouraging solution to this issue by annotating a smaller number of highly informative instances, thereby reducing the labeling effort. Previous research has relied on conventional AL strategies for MDL scenarios, which underutilize the domain-shared information of each instance during the selection procedure. To mitigate this issue, we propose a novel perturbation-based two-stage multi-domain active learning (P2S-MDAL) method incorporated into the well-regarded ASP-MTL model. Specifically, P2S-MDAL involves allocating budgets for domains and establishing regions for diversity selection, which are further used to select the most cross-domain influential samples in each region. A perturbation metric has been introduced to evaluate the robustness of the shared feature extractor of the model, facilitating the identification of potentially cross-domain influential samples. Experiments are conducted on three real-world datasets, encompassing both texts and images. The superior performance over conventional AL strategies shows the effectiveness of the proposed strategy. Additionally, an ablation study has been carried out to demonstrate the validity of each component. Finally, we outline several intriguing potential directions for future MDAL research, thus catalyzing the field's advancement.
Bubble Explorer: Fast UAV Exploration in Large-Scale and Cluttered 3D-Environments using Occlusion-Free Spheres
Tang, Benxu, Ren, Yunfan, Zhu, Fangcheng, He, Rui, Liang, Siqi, Kong, Fanze, Zhang, Fu
Autonomous exploration is a crucial aspect of robotics that has numerous applications. Most of the existing methods greedily choose goals that maximize immediate reward. This strategy is computationally efficient but insufficient for overall exploration efficiency. In recent years, some state-of-the-art methods are proposed, which generate a global coverage path and significantly improve overall exploration efficiency. However, global optimization produces high computational overhead, leading to low-frequency planner updates and inconsistent planning motion. In this work, we propose a novel method to support fast UAV exploration in large-scale and cluttered 3-D environments. We introduce a computationally low-cost viewpoints generation method using novel occlusion-free spheres. Additionally, we combine greedy strategy with global optimization, which considers both computational and exploration efficiency. We benchmark our method against state-of-the-art methods to showcase its superiority in terms of exploration efficiency and computational time. We conduct various real-world experiments to demonstrate the excellent performance of our method in large-scale and cluttered environments.
Multi-Domain Active Learning: A Comparative Study
Building classifiers on multiple domains is a practical problem in the real life. Instead of building classifiers one by one, multi-domain learning (MDL) simultaneously builds classifiers on multiple domains. MDL utilizes the information shared among the domains to improve the performance. As a supervised learning problem, the labeling effort is still high in MDL problems. Usually, this high labeling cost issue could be relieved by using active learning. Thus, it is natural to utilize active learning to reduce the labeling effort in MDL, and we refer this setting as multi-domain active learning (MDAL). However, there are only few works which are built on this setting. And when the researches have to face this problem, there is no off-the-shelf solutions. Under this circumstance, combining the current multi-domain learning models and single-domain active learning strategies might be a preliminary solution for MDAL problem. To find out the potential of this preliminary solution, a comparative study over 5 models and 4 selection strategies is made in this paper. To the best of our knowledge, this is the first work provides the formal definition of MDAL. Besides, this is the first comparative work for MDAL problem. From the results, the Multinomial Adversarial Networks (MAN) model with a simple best vs second best (BvSB) uncertainty strategy shows its superiority in most cases. We take this combination as our off-the-shelf recommendation for the MDAL problem.