He, Qingdong
UniCombine: Unified Multi-Conditional Combination with Diffusion Transformer
Wang, Haoxuan, Peng, Jinlong, He, Qingdong, Yang, Hao, Jin, Ying, Wu, Jiafu, Hu, Xiaobin, Pan, Yanjie, Gan, Zhenye, Chi, Mingmin, Peng, Bo, Wang, Yabiao
With the rapid development of diffusion models in image generation, the demand for more powerful and flexible controllable frameworks is increasing. Although existing methods can guide generation beyond text prompts, the challenge of effectively combining multiple conditional inputs while maintaining consistency with all of them remains unsolved. To address this, we introduce UniCombine, a DiT-based multi-conditional controllable generative framework capable of handling any combination of conditions, including but not limited to text prompts, spatial maps, and subject images. Specifically, we introduce a novel Conditional MMDiT Attention mechanism and incorporate a trainable LoRA module to build both the training-free and training-based versions. Additionally, we propose a new pipeline to construct SubjectSpatial200K, the first dataset designed for multi-conditional generative tasks covering both the subject-driven and spatially-aligned conditions. Extensive experimental results on multi-conditional generation demonstrate the outstanding universality and powerful capability of our approach with state-of-the-art performance.
Unveil Inversion and Invariance in Flow Transformer for Versatile Image Editing
Xu, Pengcheng, Jiang, Boyuan, Hu, Xiaobin, Luo, Donghao, He, Qingdong, Zhang, Jiangning, Wang, Chengjie, Wu, Yunsheng, Ling, Charles, Wang, Boyu
Leveraging the large generative prior of the flow transformer for tuning-free image editing requires authentic inversion to project the image into the model's domain and a flexible invariance control mechanism to preserve non-target contents. However, the prevailing diffusion inversion performs deficiently in flow-based models, and the invariance control cannot reconcile diverse rigid and non-rigid editing tasks. To address these, we systematically analyze the \textbf{inversion and invariance} control based on the flow transformer. Specifically, we unveil that the Euler inversion shares a similar structure to DDIM yet is more susceptible to the approximation error. Thus, we propose a two-stage inversion to first refine the velocity estimation and then compensate for the leftover error, which pivots closely to the model prior and benefits editing. Meanwhile, we propose the invariance control that manipulates the text features within the adaptive layer normalization, connecting the changes in the text prompt to image semantics. This mechanism can simultaneously preserve the non-target contents while allowing rigid and non-rigid manipulation, enabling a wide range of editing types such as visual text, quantity, facial expression, etc. Experiments on versatile scenarios validate that our framework achieves flexible and accurate editing, unlocking the potential of the flow transformer for versatile image editing.
NoiseBoost: Alleviating Hallucination with Noise Perturbation for Multimodal Large Language Models
Wu, Kai, Jiang, Boyuan, Jiang, Zhengkai, He, Qingdong, Luo, Donghao, Wang, Shengzhi, Liu, Qingwen, Wang, Chengjie
Multimodal large language models (MLLMs) contribute a powerful mechanism to understanding visual information building on large language models. However, MLLMs are notorious for suffering from hallucinations, especially when generating lengthy, detailed descriptions for images. Our analysis reveals that hallucinations stem from the inherent summarization mechanism of large language models, leading to excessive dependence on linguistic tokens while neglecting vision information. In this paper, we propose NoiseBoost, a broadly applicable and simple method for alleviating hallucinations for MLLMs through the integration of noise feature perturbations. Noise perturbation acts as a regularizer, facilitating a balanced distribution of attention weights among visual and linguistic tokens. Despite its simplicity, NoiseBoost consistently enhances the performance of MLLMs across common training strategies, including supervised fine-tuning and reinforcement learning. Further, NoiseBoost pioneerly enables semi-supervised learning for MLLMs, unleashing the power of unlabeled data. Comprehensive experiments demonstrate that NoiseBoost improves dense caption accuracy by 8.1% with human evaluation and achieves comparable results with 50% of the data by mining unlabeled data. Code and models are available at https://kaiwu5.github.io/noiseboost.
AdapNet: Adaptive Noise-Based Network for Low-Quality Image Retrieval
Zhang, Sihe, He, Qingdong, Peng, Jinlong, Li, Yuxi, Jiang, Zhengkai, Wu, Jiafu, Chi, Mingmin, Wang, Yabiao, Wang, Chengjie
Image retrieval aims to identify visually similar images within a database using a given query image. Traditional methods typically employ both global and local features extracted from images for matching, and may also apply re-ranking techniques to enhance accuracy. However, these methods often fail to account for the noise present in query images, which can stem from natural or human-induced factors, thereby negatively impacting retrieval performance. To mitigate this issue, we introduce a novel setting for low-quality image retrieval, and propose an Adaptive Noise-Based Network (AdapNet) to learn robust abstract representations. Specifically, we devise a quality compensation block trained to compensate for various low-quality factors in input images. Besides, we introduce an innovative adaptive noise-based loss function, which dynamically adjusts its focus on the gradient in accordance with image quality, thereby augmenting the learning of unknown noisy samples during training and enhancing intra-class compactness. To assess the performance, we construct two datasets with low-quality queries, which is built by applying various types of noise on clean query images on the standard Revisited Oxford and Revisited Paris datasets. Comprehensive experimental results illustrate that AdapNet surpasses state-of-the-art methods on the Noise Revisited Oxford and Noise Revisited Paris benchmarks, while maintaining competitive performance on high-quality datasets. The code and constructed datasets will be made available.