He, Pengcheng
DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
Chuang, Yung-Sung, Xie, Yujia, Luo, Hongyin, Kim, Yoon, Glass, James, He, Pengcheng
Despite their impressive capabilities, large language models (LLMs) are prone to hallucinations, i.e., generating content that deviates from facts seen during pretraining. We propose a simple decoding strategy for reducing hallucinations with pretrained LLMs that does not require conditioning on retrieved external knowledge nor additional fine-tuning. Our approach obtains the next-token distribution by contrasting the differences in logits obtained from projecting the later layers versus earlier layers to the vocabulary space, exploiting the fact that factual knowledge in an LLMs has generally been shown to be localized to particular transformer layers. We find that this Decoding by Contrasting Layers (DoLa) approach is able to better surface factual knowledge and reduce the generation of incorrect facts. DoLa consistently improves the truthfulness across multiple choices tasks and open-ended generation tasks, for example improving the performance of LLaMA family models on TruthfulQA by 12-17% absolute points, demonstrating its potential in making LLMs reliably generate truthful facts.
Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial Auto-Encoders
Zheng, Huangjie, He, Pengcheng, Chen, Weizhu, Zhou, Mingyuan
Employing a forward diffusion chain to gradually map the data to a noise distribution, diffusion-based generative models learn how to generate the data by inferring a reverse diffusion chain. However, this approach is slow and costly because it needs many forward and reverse steps. We propose a faster and cheaper approach that adds noise not until the data become pure random noise, but until they reach a hidden noisy-data distribution that we can confidently learn. Then, we use fewer reverse steps to generate data by starting from this hidden distribution that is made similar to the noisy data. We reveal that the proposed model can be cast as an adversarial auto-encoder empowered by both the diffusion process and a learnable implicit prior. Experimental results show even with a significantly smaller number of reverse diffusion steps, the proposed truncated diffusion probabilistic models can provide consistent improvements over the non-truncated ones in terms of performance in both unconditional and text-guided image generations. Generating photo-realistic images with probabilistic models is a challenging and important task in machine learning and computer vision, with many potential applications in data augmentation, image editing, style transfer, etc. This new modeling class, which includes both score-based and diffusion-based generative models, uses noise injection to gradually corrupt the data distribution into a simple noise distribution that can be easily sampled from, and then uses a denoising network to reverse the noise injection to generate photo-realistic images. From the perspective of score matching (Hyvรคrinen & Dayan, 2005; Vincent, 2011) and Langevin dynamics (Neal, 2011; Welling & Teh, 2011), the denoising network is trained by matching the score function, which is the gradient of the log-density of the data, of the corrupted data distribution and that of the generator distribution at different noise levels (Song & Ermon, 2019). This training objective can also be formulated under diffusion-based generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020). These two types of models have been further unified by Song et al. (2021b) under the framework of discretized stochastic differential equations.
Deep Reinforcement Learning from Hierarchical Weak Preference Feedback
Bukharin, Alexander, Li, Yixiao, He, Pengcheng, Chen, Weizhu, Zhao, Tuo
Reward design is a fundamental, yet challenging aspect of practical reinforcement learning (RL). For simple tasks, researchers typically handcraft the reward function, e.g., using a linear combination of several reward factors. However, such reward engineering is subject to approximation bias, incurs large tuning cost, and often cannot provide the granularity required for complex tasks. To avoid these difficulties, researchers have turned to reinforcement learning from human feedback (RLHF), which learns a reward function from human preferences between pairs of trajectory sequences. By leveraging preference-based reward modeling, RLHF learns complex rewards that are well aligned with human preferences, allowing RL to tackle increasingly difficult problems. Unfortunately, the applicability of RLHF is limited due to the high cost and difficulty of obtaining human preference data. In light of this cost, we investigate learning reward functions for complex tasks with less human effort; simply by ranking the importance of the reward factors. More specifically, we propose a new RL framework -- HERON, which compares trajectories using a hierarchical decision tree induced by the given ranking. These comparisons are used to train a preference-based reward model, which is then used for policy learning. We find that our framework can not only train high performing agents on a variety of difficult tasks, but also provide additional benefits such as improved sample efficiency and robustness. Our code is available at https://github.com/abukharin3/HERON.
Diffusion-GAN: Training GANs with Diffusion
Wang, Zhendong, Zheng, Huangjie, He, Pengcheng, Chen, Weizhu, Zhou, Mingyuan
Generative adversarial networks (GANs) are challenging to train stably, and a promising remedy of injecting instance noise into the discriminator input has not been very effective in practice. In this paper, we propose Diffusion-GAN, a novel GAN framework that leverages a forward diffusion chain to generate Gaussianmixture distributed instance noise. Diffusion-GAN consists of three components, including an adaptive diffusion process, a diffusion timestep-dependent discriminator, and a generator. Both the observed and generated data are diffused by the same adaptive diffusion process. At each diffusion timestep, there is a different noise-to-data ratio and the timestep-dependent discriminator learns to distinguish the diffused real data from the diffused generated data. The generator learns from the discriminator's feedback by backpropagating through the forward diffusion chain, whose length is adaptively adjusted to balance the noise and data levels. We theoretically show that the discriminator's timestep-dependent strategy gives consistent and helpful guidance to the generator, enabling it to match the true data distribution. We demonstrate the advantages of Diffusion-GAN over strong GAN baselines on various datasets, showing that it can produce more realistic images with higher stability and data efficiency than state-of-the-art GANs. Generative adversarial networks (GANs) (Goodfellow et al., 2014) and their variants (Brock et al., 2018; Karras et al., 2019; 2020a; Zhao et al., 2020) have achieved great success in synthesizing photo-realistic high-resolution images. GANs in practice, however, are known to suffer from a variety of issues ranging from non-convergence and training instability to mode collapse (Arjovsky and Bottou, 2017; Mescheder et al., 2018).
Summaries, Highlights, and Action items: Design, implementation and evaluation of an LLM-powered meeting recap system
Asthana, Sumit, Hilleli, Sagih, He, Pengcheng, Halfaker, Aaron
Meetings play a critical infrastructural role in the coordination of work. In recent years, due to shift to hybrid and remote work, more meetings are moving to online Computer Mediated Spaces. This has led to new problems (e.g. more time spent in less engaging meetings) and new opportunities (e.g. automated transcription/captioning and recap support). Recent advances in large language models (LLMs) for dialog summarization have the potential to improve the experience of meetings by reducing individuals' meeting load and increasing the clarity and alignment of meeting outputs. Despite this potential, they face technological limitation due to long transcripts and inability to capture diverse recap needs based on user's context. To address these gaps, we design, implement and evaluate in-context a meeting recap system. We first conceptualize two salient recap representations -- important highlights, and a structured, hierarchical minutes view. We develop a system to operationalize the representations with dialogue summarization as its building blocks. Finally, we evaluate the effectiveness of the system with seven users in the context of their work meetings. Our findings show promise in using LLM-based dialogue summarization for meeting recap and the need for both representations in different contexts. However, we find that LLM-based recap still lacks an understanding of whats personally relevant to participants, can miss important details, and mis-attributions can be detrimental to group dynamics. We identify collaboration opportunities such as a shared recap document that a high quality recap enables. We report on implications for designing AI systems to partner with users to learn and improve from natural interactions to overcome the limitations related to personal relevance and summarization quality.
LoSparse: Structured Compression of Large Language Models based on Low-Rank and Sparse Approximation
Li, Yixiao, Yu, Yifan, Zhang, Qingru, Liang, Chen, He, Pengcheng, Chen, Weizhu, Zhao, Tuo
Transformer models have achieved remarkable results in various natural language tasks, but they are often prohibitively large, requiring massive memories and computational resources. To reduce the size and complexity of these models, we propose LoSparse (Low-Rank and Sparse approximation), a novel model compression technique that approximates a weight matrix by the sum of a low-rank matrix and a sparse matrix. Our method combines the advantages of both low-rank approximations and pruning, while avoiding their limitations. Low-rank approximation compresses the coherent and expressive parts in neurons, while pruning removes the incoherent and non-expressive parts in neurons. Pruning enhances the diversity of low-rank approximations, and low-rank approximation prevents pruning from losing too many expressive neurons. We evaluate our method on natural language understanding, question answering, and natural language generation tasks. We show that it significantly outperforms existing compression methods.
Z-Code++: A Pre-trained Language Model Optimized for Abstractive Summarization
He, Pengcheng, Peng, Baolin, Lu, Liyang, Wang, Song, Mei, Jie, Liu, Yang, Xu, Ruochen, Awadalla, Hany Hassan, Shi, Yu, Zhu, Chenguang, Xiong, Wayne, Zeng, Michael, Gao, Jianfeng, Huang, Xuedong
This paper presents Z-Code++, a new pre-trained language model optimized for abstractive text summarization. The model extends the state of the art encoder-decoder model using three techniques. First, we use a two-phase pre-training process to improve model's performance on low-resource summarization tasks. The model is first pre-trained using text corpora for language understanding, and then is continually pre-trained on summarization corpora for grounded text generation. Second, we replace self-attention layers in the encoder with disentangled attention layers, where each word is represented using two vectors that encode its content and position, respectively. Third, we use fusion-in-encoder, a simple yet effective method of encoding long sequences in a hierarchical manner. Z-Code++ creates new state of the art on 9 out of 13 text summarization tasks across 5 languages. Our model is parameter-efficient in that it outperforms the 600x larger PaLM-540B on XSum, and the finetuned 200x larger GPT3-175B on SAMSum. In zero-shot and few-shot settings, our model substantially outperforms the competing models.
Less is More: Task-aware Layer-wise Distillation for Language Model Compression
Liang, Chen, Zuo, Simiao, Zhang, Qingru, He, Pengcheng, Chen, Weizhu, Zhao, Tuo
Layer-wise distillation is a powerful tool to compress large models (i.e. teacher models) into small ones (i.e., student models). The student distills knowledge from the teacher by mimicking the hidden representations of the teacher at every intermediate layer. However, layer-wise distillation is difficult. Since the student has a smaller model capacity than the teacher, it is often under-fitted. Furthermore, the hidden representations of the teacher contain redundant information that the student does not necessarily need for the target task's learning. To address these challenges, we propose a novel Task-aware layEr-wise Distillation (TED). TED designs task-aware filters to align the hidden representations of the student and the teacher at each layer. The filters select the knowledge that is useful for the target task from the hidden representations. As such, TED reduces the knowledge gap between the two models and helps the student to fit better on the target task. We evaluate TED in two scenarios: continual pre-training and fine-tuning. TED demonstrates significant and consistent improvements over existing distillation methods in both scenarios. Code is available at https://github.com/cliang1453/task-aware-distillation.
Interactive Editing for Text Summarization
Xie, Yujia, Wang, Xun, Chen, Si-Qing, Xiong, Wayne, He, Pengcheng
Summarizing lengthy documents is a common and essential task in our daily lives. Although recent advancements in neural summarization models can assist in crafting general-purpose summaries, human writers often have specific requirements that call for a more customized approach. To address this need, we introduce REVISE (Refinement and Editing via Iterative Summarization Enhancement), an innovative framework designed to facilitate iterative editing and refinement of draft summaries by human writers. Within our framework, writers can effortlessly modify unsatisfactory segments at any location or length and provide optional starting phrases -- our system will generate coherent alternatives that seamlessly integrate with the existing summary. At its core, REVISE incorporates a modified fill-in-the-middle model with the encoder-decoder architecture while developing novel evaluation metrics tailored for the summarization task. In essence, our framework empowers users to create high-quality, personalized summaries by effectively harnessing both human expertise and AI capabilities, ultimately transforming the summarization process into a truly collaborative and adaptive experience.
DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization
Li, Yu, Peng, Baolin, He, Pengcheng, Galley, Michel, Yu, Zhou, Gao, Jianfeng
Dialogue summarization has recently garnered significant attention due to its wide range of applications. However, existing methods for summarizing dialogues have limitations because they do not take into account the inherent structure of dialogue and rely heavily on labeled data, which can lead to poor performance in new domains. In this work, we propose DIONYSUS (dynamic input optimization in pre-training for dialogue summarization), a pre-trained encoder-decoder model for summarizing dialogues in any new domain. To pretrain DIONYSUS, we create two pseudo summaries for each dialogue example: one from a fine-tuned summarization model and the other from important dialogue turns. We then choose one of these pseudo summaries based on information distribution differences in different types of dialogues. This selected pseudo summary serves as the objective for pre-training DIONYSUS using a self-supervised approach Figure 1: A summary of a dialogue in the SAMSum on a large dialogue corpus. Our experiments dataset, where the golden summary effectively compiles show that DIONYSUS outperforms existing relevant information (in yellow) from the entire conversation.