He, Muyang
An adapted large language model facilitates multiple medical tasks in diabetes care
Wei, Lai, Ying, Zhen, He, Muyang, Chen, Yutong, Yang, Qian, Hong, Yanzhe, Lu, Jiaping, Li, Xiaoying, Huang, Weiran, Chen, Ying
Diabetes is a chronic disease that poses a significant global health burden, and optimizing diabetes management requires multi-stakeholder collaboration. Large language models (LLMs) have shown promise in various healthcare scenarios, but their effectiveness across a diverse range of diabetes tasks remains unproven. In this study, we introduced a framework to train and validate diabetes-specific LLMs. We first developed a comprehensive data processing pipeline that includes data collection, filtering, augmentation and refinement. This approach contributes to creating a high-quality, diabetes-specific dataset, and several evaluation benchmarks entirely from scratch. Utilizing the collected training dataset, we fine-tuned a diabetes-specific LLM family that demonstrated state-of-the-art proficiency in understanding and processing various diabetes tasks compared to other LLMs. Furthermore, clinical studies showed the potential applications of our models in diabetes care, including providing personalized healthcare, assisting medical education, and streamlining clinical tasks. In conclusion, our study introduced a framework to develop and evaluate a diabetes-specific LLM family, and highlighted its potential to enhance clinical practice and provide personalized, data-driven support for diabetes support when facing different end users.
Efficient Multimodal Large Language Models: A Survey
Jin, Yizhang, Li, Jian, Liu, Yexin, Gu, Tianjun, Wu, Kai, Jiang, Zhengkai, He, Muyang, Zhao, Bo, Tan, Xin, Gan, Zhenye, Wang, Yabiao, Wang, Chengjie, Ma, Lizhuang
In the past year, Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning. However, the extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry. Thus, studying efficient and lightweight MLLMs has enormous potential, especially in edge computing scenarios. In this survey, we provide a comprehensive and systematic review of the current state of efficient MLLMs. Specifically, we summarize the timeline of representative efficient MLLMs, research state of efficient structures and strategies, and the applications. Finally, we discuss the limitations of current efficient MLLM research and promising future directions.
Large-scale Dataset Pruning with Dynamic Uncertainty
He, Muyang, Yang, Shuo, Huang, Tiejun, Zhao, Bo
The state of the art of many learning tasks, e.g., image classification, is advanced by collecting larger datasets and then training larger models on them. As the outcome, the increasing computational cost is becoming unaffordable. In this paper, we investigate how to prune the large-scale datasets, and thus produce an informative subset for training sophisticated deep models with negligible performance drop. We propose a simple yet effective dataset pruning method by exploring both the prediction uncertainty and training dynamics. To our knowledge, this is the first work to study dataset pruning on large-scale datasets, i.e., ImageNet-1K and ImageNet-21K, and advanced models, i.e., Swin Transformer and ConvNeXt. Extensive experimental results indicate that our method outperforms the state of the art and achieves 75% lossless compression ratio on both ImageNet-1K and ImageNet-21K. The code and pruned datasets are available at https://github.