He, Min
StarWhisper Telescope: Agent-Based Observation Assistant System to Approach AI Astrophysicist
Wang, Cunshi, Hu, Xinjie, Zhang, Yu, Chen, Xunhao, Du, Pengliang, Mao, Yiming, Wang, Rui, Li, Yuyang, Wu, Ying, Yang, Hang, Li, Yansong, Wang, Beichuan, Mu, Haiyang, Wang, Zheng, Tian, Jianfeng, Ge, Liang, Mao, Yongna, Li, Shengming, Lu, Xiaomeng, Zou, Jinhang, Huang, Yang, Sun, Ningchen, Zheng, Jie, He, Min, Bai, Yu, Jin, Junjie, Wu, Hong, Shang, Chaohui, Liu, Jifeng
With the rapid advancements in Large Language Models (LLMs), LLM-based agents have introduced convenient and user-friendly methods for leveraging tools across various domains. In the field of astronomical observation, the construction of new telescopes has significantly increased astronomers' workload. Deploying LLM-powered agents can effectively alleviate this burden and reduce the costs associated with training personnel. Within the Nearby Galaxy Supernovae Survey (NGSS) project, which encompasses eight telescopes across three observation sites, aiming to find the transients from the galaxies in 50 mpc, we have developed the \textbf{StarWhisper Telescope System} to manage the entire observation process. This system automates tasks such as generating observation lists, conducting observations, analyzing data, and providing feedback to the observer. Observation lists are customized for different sites and strategies to ensure comprehensive coverage of celestial objects. After manual verification, these lists are uploaded to the telescopes via the agents in the system, which initiates observations upon neutral language. The observed images are analyzed in real-time, and the transients are promptly communicated to the observer. The agent modifies them into a real-time follow-up observation proposal and send to the Xinglong observatory group chat, then add them to the next-day observation lists. Additionally, the integration of AI agents within the system provides online accessibility, saving astronomers' time and encouraging greater participation from amateur astronomers in the NGSS project.
Molecular Dynamics and Machine Learning Unlock Possibilities in Beauty Design -- A Perspective
Xu, Yuzhi, Ni, Haowei, Gao, Qinhui, Chang, Chia-Hua, Huo, Yanran, Zhao, Fanyu, Hu, Shiyu, Xia, Wei, Zhang, Yike, Grovu, Radu, He, Min, Zhang, John. Z. H., Wang, Yuanqing
Computational molecular design -- the endeavor to design molecules, with various missions, aided by machine learning and molecular dynamics approaches, has been widely applied to create valuable new molecular entities, from small molecule therapeutics to protein biologics. In the small data regime, physics-based approaches model the interaction between the molecule being designed and proteins of key physiological functions, providing structural insights into the mechanism. When abundant data has been collected, a quantitative structure-activity relationship (QSAR) can be more directly constructed from experimental data, from which machine learning can distill key insights to guide the design of the next round of experiment design. Machine learning methodologies can also facilitate physical modeling, from improving the accuracy of force fields and extending them to unseen chemical spaces, to more directly enhancing the sampling on the conformational spaces. We argue that these techniques are mature enough to be applied to not just extend the longevity of life, but the beauty it manifests. In this perspective, we review the current frontiers in the research \& development of skin care products, as well as the statistical and physical toolbox applicable to addressing the challenges in this industry. Feasible interdisciplinary research projects are proposed to harness the power of machine learning tools to design innovative, effective, and inexpensive skin care products.
BatmanNet: Bi-branch Masked Graph Transformer Autoencoder for Molecular Representation
Wang, Zhen, Feng, Zheng, Li, Yanjun, Li, Bowen, Wang, Yongrui, Sha, Chulin, He, Min, Li, Xiaolin
Although substantial efforts have been made using graph neural networks (GNNs) for AI-driven drug discovery (AIDD), effective molecular representation learning remains an open challenge, especially in the case of insufficient labeled molecules. Recent studies suggest that big GNN models pre-trained by self-supervised learning on unlabeled datasets enable better transfer performance in downstream molecular property prediction tasks. However, the approaches in these studies require multiple complex self-supervised tasks and large-scale datasets, which are time-consuming, computationally expensive, and difficult to pre-train end-to-end. Here, we design a simple yet effective self-supervised strategy to simultaneously learn local and global information about molecules, and further propose a novel bi-branch masked graph transformer autoencoder (BatmanNet) to learn molecular representations. BatmanNet features two tailored complementary and asymmetric graph autoencoders to reconstruct the missing nodes and edges, respectively, from a masked molecular graph. With this design, BatmanNet can effectively capture the underlying structure and semantic information of molecules, thus improving the performance of molecular representation. BatmanNet achieves state-of-the-art results for multiple drug discovery tasks, including molecular properties prediction, drug-drug interaction, and drug-target interaction, on 13 benchmark datasets, demonstrating its great potential and superiority in molecular representation learning.