He, Kunlun
Deep Incomplete Multi-view Clustering with Distribution Dual-Consistency Recovery Guidance
Jin, Jiaqi, Wang, Siwei, Dong, Zhibin, Yang, Xihong, Liu, Xinwang, Zhu, En, He, Kunlun
Multi-view clustering leverages complementary representations from diverse sources to enhance performance. However, real-world data often suffer incomplete cases due to factors like privacy concerns and device malfunctions. A key challenge is effectively utilizing available instances to recover missing views. Existing methods frequently overlook the heterogeneity among views during recovery, leading to significant distribution discrepancies between recovered and true data. Additionally, many approaches focus on cross-view correlations, neglecting insights from intra-view reliable structure and cross-view clustering structure. To address these issues, we propose BURG, a novel method for incomplete multi-view clustering with distriBution dUal-consistency Recovery Guidance. We treat each sample as a distinct category and perform cross-view distribution transfer to predict the distribution space of missing views. To compensate for the lack of reliable category information, we design a dual-consistency guided recovery strategy that includes intra-view alignment guided by neighbor-aware consistency and cross-view alignment guided by prototypical consistency. Extensive experiments on benchmarks demonstrate the superiority of BURG in the incomplete multi-view scenario.
Causally-informed Deep Learning towards Explainable and Generalizable Outcomes Prediction in Critical Care
Cheng, Yuxiao, Song, Xinxin, Wang, Ziqian, Zhong, Qin, He, Kunlun, Suo, Jinli
Recent advances in deep learning (DL) have prompted the development of high-performing early warning score (EWS) systems, predicting clinical deteriorations such as acute kidney injury, acute myocardial infarction, or circulatory failure. DL models have proven to be powerful tools for various tasks but come with the cost of lacking interpretability and limited generalizability, hindering their clinical applications. To develop a practical EWS system applicable to various outcomes, we propose causally-informed explainable early prediction model, which leverages causal discovery to identify the underlying causal relationships of prediction and thus owns two unique advantages: demonstrating the explicit interpretation of the prediction while exhibiting decent performance when applied to unfamiliar environments. Benefiting from these features, our approach achieves superior accuracy for 6 different critical deteriorations and achieves better generalizability across different patient groups, compared to various baseline algorithms. Besides, we provide explicit causal pathways to serve as references for assistant clinical diagnosis and potential interventions. The proposed approach enhances the practical application of deep learning in various medical scenarios.
FlexCare: Leveraging Cross-Task Synergy for Flexible Multimodal Healthcare Prediction
Xu, Muhao, Zhu, Zhenfeng, Li, Youru, Zheng, Shuai, Zhao, Yawei, He, Kunlun, Zhao, Yao
Multimodal electronic health record (EHR) data can offer a holistic assessment of a patient's health status, supporting various predictive healthcare tasks. Recently, several studies have embraced the multitask learning approach in the healthcare domain, exploiting the inherent correlations among clinical tasks to predict multiple outcomes simultaneously. However, existing methods necessitate samples to possess complete labels for all tasks, which places heavy demands on the data and restricts the flexibility of the model. Meanwhile, within a multitask framework with multimodal inputs, how to comprehensively consider the information disparity among modalities and among tasks still remains a challenging problem. To tackle these issues, a unified healthcare prediction model, also named by \textbf{FlexCare}, is proposed to flexibly accommodate incomplete multimodal inputs, promoting the adaption to multiple healthcare tasks. The proposed model breaks the conventional paradigm of parallel multitask prediction by decomposing it into a series of asynchronous single-task prediction. Specifically, a task-agnostic multimodal information extraction module is presented to capture decorrelated representations of diverse intra- and inter-modality patterns. Taking full account of the information disparities between different modalities and different tasks, we present a task-guided hierarchical multimodal fusion module that integrates the refined modality-level representations into an individual patient-level representation. Experimental results on multiple tasks from MIMIC-IV/MIMIC-CXR/MIMIC-NOTE datasets demonstrate the effectiveness of the proposed method. Additionally, further analysis underscores the feasibility and potential of employing such a multitask strategy in the healthcare domain. The source code is available at https://github.com/mhxu1998/FlexCare.
UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation
Yang, Runzhao, Chen, Yinda, Zhang, Zhihong, Liu, Xiaoyu, Li, Zongren, He, Kunlun, Xiong, Zhiwei, Suo, Jinli, Dai, Qionghai
In the field of medical image compression, Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios, yet they are constrained by a one-to-one fitting approach that results in lengthy encoding times. Our novel method, ``\textbf{UniCompress}'', innovatively extends the compression capabilities of INR by being the first to compress multiple medical data blocks using a single INR network. By employing wavelet transforms and quantization, we introduce a codebook containing frequency domain information as a prior input to the INR network. This enhances the representational power of INR and provides distinctive conditioning for different image blocks. Furthermore, our research introduces a new technique for the knowledge distillation of implicit representations, simplifying complex model knowledge into more manageable formats to improve compression ratios. Extensive testing on CT and electron microscopy (EM) datasets has demonstrated that UniCompress outperforms traditional INR methods and commercial compression solutions like HEVC, especially in complex and high compression scenarios. Notably, compared to existing INR techniques, UniCompress achieves a 4$\sim$5 times increase in compression speed, marking a significant advancement in the field of medical image compression. Codes will be publicly available.
Self-Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment
Liu, Meng, Liang, Ke, Zhao, Yawei, Tu, Wenxuan, Zhou, Sihang, Liu, Xinwang, He, Kunlun
Temporal graph learning aims to generate high-quality representations for graph-based tasks along with dynamic information, which has recently drawn increasing attention. Unlike the static graph, a temporal graph is usually organized in the form of node interaction sequences over continuous time instead of an adjacency matrix. Most temporal graph learning methods model current interactions by combining historical information over time. However, such methods merely consider the first-order temporal information while ignoring the important high-order structural information, leading to sub-optimal performance. To solve this issue, by extracting both temporal and structural information to learn more informative node representations, we propose a self-supervised method termed S2T for temporal graph learning. Note that the first-order temporal information and the high-order structural information are combined in different ways by the initial node representations to calculate two conditional intensities, respectively. Then the alignment loss is introduced to optimize the node representations to be more informative by narrowing the gap between the two intensities. Concretely, besides modeling temporal information using historical neighbor sequences, we further consider the structural information from both local and global levels. At the local level, we generate structural intensity by aggregating features from the high-order neighbor sequences. At the global level, a global representation is generated based on all nodes to adjust the structural intensity according to the active statuses on different nodes. Extensive experiments demonstrate that the proposed method S2T achieves at most 10.13% performance improvement compared with the state-of-the-art competitors on several datasets.
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
Cheng, Yuxiao, Wang, Ziqian, Xiao, Tingxiong, Zhong, Qin, Suo, Jinli, He, Kunlun
Time-series causal discovery (TSCD) is a fundamental problem of machine learning. However, existing synthetic datasets cannot properly evaluate or predict the algorithms' performance on real data. This study introduces the CausalTime pipeline to generate time-series that highly resemble the real data and with ground truth causal graphs for quantitative performance evaluation. The pipeline starts from real observations in a specific scenario and produces a matching benchmark dataset. Firstly, we harness deep neural networks along with normalizing flow to accurately capture realistic dynamics. Secondly, we extract hypothesized causal graphs by performing importance analysis on the neural network or leveraging prior knowledge. Thirdly, we derive the ground truth causal graphs by splitting the causal model into causal term, residual term, and noise term. Lastly, using the fitted network and the derived causal graph, we generate corresponding versatile time-series proper for algorithm assessment. In the experiments, we validate the fidelity of the generated data through qualitative and quantitative experiments, followed by a benchmarking of existing TSCD algorithms using these generated datasets. CausalTime offers a feasible solution to evaluating TSCD algorithms in real applications and can be generalized to a wide range of fields. For easy use of the proposed approach, we also provide a user-friendly website, hosted on www.causaltime.cc.
A Survey of Deep Graph Clustering: Taxonomy, Challenge, Application, and Open Resource
Liu, Yue, Xia, Jun, Zhou, Sihang, Yang, Xihong, Liang, Ke, Fan, Chenchen, Zhuang, Yan, Li, Stan Z., Liu, Xinwang, He, Kunlun
Graph clustering, which aims to divide nodes in the graph into several distinct clusters, is a fundamental yet challenging task. Benefiting from the powerful representation capability of deep learning, deep graph clustering methods have achieved great success in recent years. However, the corresponding survey paper is relatively scarce, and it is imminent to make a summary of this field. From this motivation, we conduct a comprehensive survey of deep graph clustering. Firstly, we introduce formulaic definition, evaluation, and development in this field. Secondly, the taxonomy of deep graph clustering methods is presented based on four different criteria, including graph type, network architecture, learning paradigm, and clustering method. Thirdly, we carefully analyze the existing methods via extensive experiments and summarize the challenges and opportunities from five perspectives, including graph data quality, stability, scalability, discriminative capability, and unknown cluster number. Besides, the applications of deep graph clustering methods in six domains, including computer vision, natural language processing, recommendation systems, social network analyses, bioinformatics, and medical science, are presented. Last but not least, this paper provides open resource supports, including 1) a collection (\url{https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering}) of state-of-the-art deep graph clustering methods (papers, codes, and datasets) and 2) a unified framework (\url{https://github.com/Marigoldwu/A-Unified-Framework-for-Deep-Attribute-Graph-Clustering}) of deep graph clustering. We hope this work can serve as a quick guide and help researchers overcome challenges in this vibrant field.
CUTS+: High-dimensional Causal Discovery from Irregular Time-series
Cheng, Yuxiao, Li, Lianglong, Xiao, Tingxiong, Li, Zongren, Zhong, Qin, Suo, Jinli, He, Kunlun
Causal discovery in time-series is a fundamental problem in the machine learning community, enabling causal reasoning and decision-making in complex scenarios. Recently, researchers successfully discover causality by combining neural networks with Granger causality, but their performances degrade largely when encountering high-dimensional data because of the highly redundant network design and huge causal graphs. Moreover, the missing entries in the observations further hamper the causal structural learning. To overcome these limitations, We propose CUTS+, which is built on the Granger-causality-based causal discovery method CUTS and raises the scalability by introducing a technique called Coarse-to-fine-discovery (C2FD) and leveraging a message-passing-based graph neural network (MPGNN). Compared to previous methods on simulated, quasi-real, and real datasets, we show that CUTS+ largely improves the causal discovery performance on high-dimensional data with different types of irregular sampling.
Medical Federated Model with Mixture of Personalized and Sharing Components
Zhao, Yawei, Liu, Qinghe, Liu, Xinwang, He, Kunlun
Although data-driven methods usually have noticeable performance on disease diagnosis and treatment, they are suspected of leakage of privacy due to collecting data for model training. Recently, federated learning provides a secure and trustable alternative to collaboratively train model without any exchange of medical data among multiple institutes. Therefore, it has draw much attention due to its natural merit on privacy protection. However, when heterogenous medical data exists between different hospitals, federated learning usually has to face with degradation of performance. In the paper, we propose a new personalized framework of federated learning to handle the problem. It successfully yields personalized models based on awareness of similarity between local data, and achieves better tradeoff between generalization and personalization than existing methods. After that, we further design a differentially sparse regularizer to improve communication efficiency during procedure of model training. Additionally, we propose an effective method to reduce the computational cost, which improves computation efficiency significantly. Furthermore, we collect 5 real medical datasets, including 2 public medical image datasets and 3 private multi-center clinical diagnosis datasets, and evaluate its performance by conducting nodule classification, tumor segmentation, and clinical risk prediction tasks. Comparing with 13 existing related methods, the proposed method successfully achieves the best model performance, and meanwhile up to 60% improvement of communication efficiency. Source code is public, and can be accessed at: https://github.com/ApplicationTechnologyOfMedicalBigData/pFedNet-code.
CUTS: Neural Causal Discovery from Irregular Time-Series Data
Cheng, Yuxiao, Yang, Runzhao, Xiao, Tingxiong, Li, Zongren, Suo, Jinli, He, Kunlun, Dai, Qionghai
Causal discovery from time-series data has been a central task in machine learning. Recently, Granger causality inference is gaining momentum due to its good explainability and high compatibility with emerging deep neural networks. However, most existing methods assume structured input data and degenerate greatly when encountering data with randomly missing entries or non-uniform sampling frequencies, which hampers their applications in real scenarios. To address this issue, here we present CUTS, a neural Granger causal discovery algorithm to jointly impute unobserved data points and build causal graphs, via plugging in two mutually boosting modules in an iterative framework: (i) Latent data prediction stage: designs a Delayed Supervision Graph Neural Network (DSGNN) to hallucinate and register unstructured data which might be of high dimension and with complex distribution; (ii) Causal graph fitting stage: builds a causal adjacency matrix with imputed data under sparse penalty. Experiments show that CUTS effectively infers causal graphs from unstructured time-series data, with significantly superior performance to existing methods. Our approach constitutes a promising step towards applying causal discovery to real applications with non-ideal observations.