Goto

Collaborating Authors

 He, Junfeng


Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation

arXiv.org Artificial Intelligence

Human feedback plays a critical role in learning and refining reward models for text-to-image generation, but the optimal form the feedback should take for learning an accurate reward function has not been conclusively established. This paper investigates the effectiveness of fine-grained feedback which captures nuanced distinctions in image quality and prompt-alignment, compared to traditional coarse-grained feedback (for example, thumbs up/down or ranking between a set of options). While fine-grained feedback holds promise, particularly for systems catering to diverse societal preferences, we show that demonstrating its superiority to coarse-grained feedback is not automatic. Through experiments on real and synthetic preference data, we surface the complexities of building effective models due to the interplay of model choice, feedback type, and the alignment between human judgment and computational interpretation. We identify key challenges in eliciting and utilizing fine-grained feedback, prompting a reassessment of its assumed benefits and practicality. Our findings -- e.g., that fine-grained feedback can lead to worse models for a fixed budget, in some settings; however, in controlled settings with known attributes, fine grained rewards can indeed be more helpful -- call for careful consideration of feedback attributes and potentially beckon novel modeling approaches to appropriately unlock the potential value of fine-grained feedback in-the-wild.


OriWheelBot: An origami-wheeled robot

arXiv.org Artificial Intelligence

Origami-inspired robots with multiple advantages, such as being lightweight, requiring less assembly, and exhibiting exceptional deformability, have received substantial and sustained attention. However, the existing origami-inspired robots are usually of limited functionalities and developing feature-rich robots is very challenging. Here, we report an origami-wheeled robot (OriWheelBot) with variable width and outstanding sand walking versatility. The OriWheelBot's ability to adjust wheel width over obstacles is achieved by origami wheels made of Miura origami. An improved version, called iOriWheelBot, is also developed to automatically judge the width of the obstacles. Three actions, namely direct pass, variable width pass, and direct return, will be carried out depending on the width of the channel between the obstacles. We have identified two motion mechanisms, i.e., sand-digging and sand-pushing, with the latter being more conducive to walking on the sand. We have systematically examined numerous sand walking characteristics, including carrying loads, climbing a slope, walking on a slope, and navigating sand pits, small rocks, and sand traps. The OriWheelBot can change its width by 40%, has a loading-carrying ratio of 66.7% on flat sand and can climb a 17-degree sand incline. The OriWheelBot can be useful for planetary subsurface exploration and disaster area rescue.


Reciprocal Hash Tables for Nearest Neighbor Search

AAAI Conferences

Recent years have witnessed the success of hashingtechniques in approximate nearest neighbor search. Inpractice, multiple hash tables are usually employed toretrieve more desired results from all hit buckets ofeach table. However, there are rare works studying theunified approach to constructing multiple informativehash tables except the widely used random way. In thispaper, we regard the table construction as a selectionproblem over a set of candidate hash functions. Withthe graph representation of the function set, we proposean efficient solution that sequentially applies normal-ized dominant set to finding the most informative andindependent hash functions for each table. To furtherreduce the redundancy between tables, we explore thereciprocal hash tables in a boosting manner, where thehash function graph is updated with high weights em-phasized on the misclassified neighbor pairs of previoushash tables. The construction method is general andcompatible with different types of hashing algorithmsusing different feature spaces and/or parameter settings.Extensive experiments on two large-scale benchmarksdemonstrate that the proposed method outperforms bothnaive construction method and state-of-the-art hashingalgorithms, with up to 65.93% accuracy gains.


On the Difficulty of Nearest Neighbor Search

arXiv.org Machine Learning

Fast approximate nearest neighbor (NN) search in large databases is becoming popular. Several powerful learning-based formulations have been proposed recently. However, not much attention has been paid to a more fundamental question: how difficult is (approximate) nearest neighbor search in a given data set? And which data properties affect the difficulty of nearest neighbor search and how? This paper introduces the first concrete measure called Relative Contrast that can be used to evaluate the influence of several crucial data characteristics such as dimensionality, sparsity, and database size simultaneously in arbitrary normed metric spaces. Moreover, we present a theoretical analysis to prove how the difficulty measure (relative contrast) determines/affects the complexity of Local Sensitive Hashing, a popular approximate NN search method. Relative contrast also provides an explanation for a family of heuristic hashing algorithms with good practical performance based on PCA. Finally, we show that most of the previous works in measuring NN search meaningfulness/difficulty can be derived as special asymptotic cases for dense vectors of the proposed measure.