He, Jia
Does Prompt Formatting Have Any Impact on LLM Performance?
He, Jia, Rungta, Mukund, Koleczek, David, Sekhon, Arshdeep, Wang, Franklin X, Hasan, Sadid
In the realm of Large Language Models (LLMs), prompt optimization is crucial for model performance. Although previous research has explored aspects like rephrasing prompt contexts, using various prompting techniques (like in-context learning and chain-of-thought), and ordering few-shot examples, our understanding of LLM sensitivity to prompt templates remains limited. Therefore, this paper examines the impact of different prompt templates on LLM performance. We formatted the same contexts into various human-readable templates, including plain text, Markdown, JSON, and YAML, and evaluated their impact across tasks like natural language reasoning, code generation, and translation using OpenAI's GPT models. Experiments show that GPT-3.5-turbo's performance varies by up to 40\% in a code translation task depending on the prompt template, while larger models like GPT-4 are more robust to these variations. Our analysis highlights the need to reconsider the use of fixed prompt templates, as different formats can significantly affect model performance.
Decoding the AI Pen: Techniques and Challenges in Detecting AI-Generated Text
Abdali, Sara, Anarfi, Richard, Barberan, CJ, He, Jia
Large Language Models (LLMs) have revolutionized the field of Natural Language Generation (NLG) by demonstrating an impressive ability to generate human-like text. However, their widespread usage introduces challenges that necessitate thoughtful examination, ethical scrutiny, and responsible practices. In this study, we delve into these challenges, explore existing strategies for mitigating them, with a particular emphasis on identifying AI-generated text as the ultimate solution. Additionally, we assess the feasibility of detection from a theoretical perspective and propose novel research directions to address the current limitations in this domain.
Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices
Abdali, Sara, Anarfi, Richard, Barberan, CJ, He, Jia
Large language models (LLMs) have significantly transformed the landscape of Natural Language Processing (NLP). Their impact extends across a diverse spectrum of tasks, revolutionizing how we approach language understanding and generations. Nevertheless, alongside their remarkable utility, LLMs introduce critical security and risk considerations. These challenges warrant careful examination to ensure responsible deployment and safeguard against potential vulnerabilities. This research paper thoroughly investigates security and privacy concerns related to LLMs from five thematic perspectives: security and privacy concerns, vulnerabilities against adversarial attacks, potential harms caused by misuses of LLMs, mitigation strategies to address these challenges while identifying limitations of current strategies. Lastly, the paper recommends promising avenues for future research to enhance the security and risk management of LLMs.
Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning
Yu, Shuo, Xue, Hongyan, Ao, Xiang, Pan, Feiyang, He, Jia, Tu, Dandan, He, Qing
In the field of quantitative trading, it is common practice to transform raw historical stock data into indicative signals for the market trend. Such signals are called alpha factors. Alphas in formula forms are more interpretable and thus favored by practitioners concerned with risk. In practice, a set of formulaic alphas is often used together for better modeling precision, so we need to find synergistic formulaic alpha sets that work well together. However, most traditional alpha generators mine alphas one by one separately, overlooking the fact that the alphas would be combined later. In this paper, we propose a new alpha-mining framework that prioritizes mining a synergistic set of alphas, i.e., it directly uses the performance of the downstream combination model to optimize the alpha generator. Our framework also leverages the strong exploratory capabilities of reinforcement learning~(RL) to better explore the vast search space of formulaic alphas. The contribution to the combination models' performance is assigned to be the return used in the RL process, driving the alpha generator to find better alphas that improve upon the current set. Experimental evaluations on real-world stock market data demonstrate both the effectiveness and the efficiency of our framework for stock trend forecasting. The investment simulation results show that our framework is able to achieve higher returns compared to previous approaches.
Style Miner: Find Significant and Stable Explanatory Factors in Time Series with Constrained Reinforcement Learning
Li, Dapeng, Pan, Feiyang, He, Jia, Xu, Zhiwei, Tu, Dandan, Fan, Guoliang
In high-dimensional time-series analysis, it is essential to have a set of key factors (namely, the style factors) that explain the change of the observed variable. For example, volatility modeling in finance relies on a set of risk factors, and climate change studies in climatology rely on a set of causal factors. The ideal low-dimensional style factors should balance significance (with high explanatory power) and stability (consistent, no significant fluctuations). However, previous supervised and unsupervised feature extraction methods can hardly address the tradeoff. In this paper, we propose Style Miner, a reinforcement learning method to generate style factors. We first formulate the problem as a Constrained Markov Decision Process with explanatory power as the return and stability as the constraint. Then, we design fine-grained immediate rewards and costs and use a Lagrangian heuristic to balance them adaptively. Experiments on real-world financial data sets show that Style Miner outperforms existing learning-based methods by a large margin and achieves a relatively 10% gain in R-squared explanatory power compared to the industry-renowned factors proposed by human experts.
Efficient and Adaptive Kernelization for Nonlinear Max-margin Multi-view Learning
Du, Changying, He, Jia, Du, Changde, Zhuang, Fuzhen, He, Qing, Long, Guoping
Existing multi-view learning methods based on kernel function either require the user to select and tune a single predefined kernel or have to compute and store many Gram matrices to perform multiple kernel learning. Apart from the huge consumption of manpower, computation and memory resources, most of these models seek point estimation of their parameters, and are prone to overfit-ting to small training data. This paper presents an adaptive kernel nonlinear max-margin multi-view learning model under the Bayesian framework. Specifically, we regularize the posterior of an efficient multi-view latent variable model by explicitly mapping the latent representations extracted from multiple data views to a random Fourier feature space where max-margin classification constraints are imposed. Assuming these random features are drawn from Dirichlet process Gaussian mixtures, we can adaptively learn shift-invariant kernels from data according to Bochners theorem. For inference, we employ the data augmentation idea for hinge loss, and design an efficient gradient-based MCMC sampler in the augmented space. Having no need to compute the Gram matrix, our algorithm scales linearly with the size of training set. Extensive experiments on real-world datasets demonstrate that our method has superior performance.
Learning beyond Predefined Label Space via Bayesian Nonparametric Topic Modelling
Du, Changying, Zhuang, Fuzhen, He, Jia, He, Qing, Long, Guoping
In real world machine learning applications, testing data may contain some meaningful new categories that have not been seen in labeled training data. To simultaneously recognize new data categories and assign most appropriate category labels to the data actually from known categories, existing models assume the number of unknown new categories is pre-specified, though it is difficult to determine in advance. In this paper, we propose a Bayesian nonparametric topic model to automatically infer this number, based on the hierarchical Dirichlet process and the notion of latent Dirichlet allocation. Exact inference in our model is intractable, so we provide an efficient collapsed Gibbs sampling algorithm for approximate posterior inference. Extensive experiments on various text data sets show that: (a) compared with parametric approaches that use pre-specified true number of new categories, the proposed nonparametric approach can yield comparable performance; and (b) when the exact number of new categories is unavailable, i.e. the parametric approaches only have a rough idea about the new categories, our approach has evident performance advantages.