He, Ji
SS-CTML: Self-Supervised Cross-Task Mutual Learning for CT Image Reconstruction
Chen, Gaofeng, Zhang, Yaoduo, Huang, Li, Wang, Pengfei, Zhang, Wenyu, Zeng, Dong, Ma, Jianhua, He, Ji
Supervised deep-learning (SDL) techniques with paired training datasets have been widely studied for X-ray computed tomography (CT) image reconstruction. However, due to the difficulties of obtaining paired training datasets in clinical routine, the SDL methods are still away from common uses in clinical practices. In recent years, self-supervised deep-learning (SSDL) techniques have shown great potential for the studies of CT image reconstruction. In this work, we propose a self-supervised cross-task mutual learning (SS-CTML) framework for CT image reconstruction. Specifically, a sparse-view scanned and a limited-view scanned sinogram data are first extracted from a full-view scanned sinogram data, which results in three individual reconstruction tasks, i.e., the full-view CT (FVCT) reconstruction, the sparse-view CT (SVCT) reconstruction, and limited-view CT (LVCT) reconstruction. Then, three neural networks are constructed for the three reconstruction tasks. Considering that the ultimate goals of the three tasks are all to reconstruct high-quality CT images, we therefore construct a set of cross-task mutual learning objectives for the three tasks, in which way, the three neural networks can be self-supervised optimized by learning from each other. Clinical datasets are adopted to evaluate the effectiveness of the proposed framework. Experimental results demonstrate that the SS-CTML framework can obtain promising CT image reconstruction performance in terms of both quantitative and qualitative measurements.
Crack-EdgeSAM Self-Prompting Crack Segmentation System for Edge Devices
Wang, Yingchu, He, Ji, Yu, Shijie
Structural health monitoring (SHM) is essential for the early detection of infrastructure defects, such as cracks in concrete bridge pier. but often faces challenges in efficiency and accuracy in complex environments. Although the Segment Anything Model (SAM) achieves excellent segmentation performance, its computational demands limit its suitability for real-time applications on edge devices. To address these challenges, this paper proposes Crack-EdgeSAM, a self-prompting crack segmentation system that integrates YOLOv8 for generating prompt boxes and a fine-tuned EdgeSAM model for crack segmentation. To ensure computational efficiency, the method employs ConvLoRA, a Parameter-Efficient Fine-Tuning (PEFT) technique, along with DiceFocalLoss to fine-tune the EdgeSAM model. Our experimental results on public datasets and the climbing robot automatic inspections demonstrate that the system achieves high segmentation accuracy and significantly enhanced inference speed compared to the most recent methods. Notably, the system processes 1024 x 1024 pixels images at 46 FPS on our PC and 8 FPS on Jetson Orin Nano.
Q-LDA: Uncovering Latent Patterns in Text-based Sequential Decision Processes
Chen, Jianshu, Wang, Chong, Xiao, Lin, He, Ji, Li, Lihong, Deng, Li
In sequential decision making, it is often important and useful for end users to understand the underlying patterns or causes that lead to the corresponding decisions. However, typical deep reinforcement learning algorithms seldom provide such information due to their black-box nature. In this paper, we present a probabilistic model, Q-LDA, to uncover latent patterns in text-based sequential decision processes. The model can be understood as a variant of latent topic models that are tailored to maximize total rewards; we further draw an interesting connection between an approximate maximum-likelihood estimation of Q-LDA and the celebrated Q-learning algorithm. We demonstrate in the text-game domain that our proposed method not only provides a viable mechanism to uncover latent patterns in decision processes, but also obtains state-of-the-art rewards in these games.
Q-LDA: Uncovering Latent Patterns in Text-based Sequential Decision Processes
Chen, Jianshu, Wang, Chong, Xiao, Lin, He, Ji, Li, Lihong, Deng, Li
In sequential decision making, it is often important and useful for end users to understand the underlying patterns or causes that lead to the corresponding decisions. However, typical deep reinforcement learning algorithms seldom provide such information due to their black-box nature. In this paper, we present a probabilistic model, Q-LDA, to uncover latent patterns in text-based sequential decision processes. The model can be understood as a variant of latent topic models that are tailored to maximize total rewards; we further draw an interesting connection between an approximate maximum-likelihood estimation of Q-LDA and the celebrated Q-learning algorithm. We demonstrate in the text-game domain that our proposed method not only provides a viable mechanism to uncover latent patterns in decision processes, but also obtains state-of-the-art rewards in these games.
Deep Reinforcement Learning with a Natural Language Action Space
He, Ji, Chen, Jianshu, He, Xiaodong, Gao, Jianfeng, Li, Lihong, Deng, Li, Ostendorf, Mari
This paper introduces a novel architecture for reinforcement learning with deep neural networks designed to handle state and action spaces characterized by natural language, as found in text-based games. Termed a deep reinforcement relevance network (DRRN), the architecture represents action and state spaces with separate embedding vectors, which are combined with an interaction function to approximate the Q-function in reinforcement learning. We evaluate the DRRN on two popular text games, showing superior performance over other deep Q-learning architectures. Experiments with paraphrased action descriptions show that the model is extracting meaning rather than simply memorizing strings of text.
End-to-end Learning of LDA by Mirror-Descent Back Propagation over a Deep Architecture
Chen, Jianshu, He, Ji, Shen, Yelong, Xiao, Lin, He, Xiaodong, Gao, Jianfeng, Song, Xinying, Deng, Li
We develop a fully discriminative learning approach for supervised Latent Dirichlet Allocation (LDA) model using Back Propagation (i.e., BP-sLDA), which maximizes the posterior probability of the prediction variable given the input document. Different from traditional variational learning or Gibbs sampling approaches, the proposed learning method applies (i) the mirror descent algorithm for maximum a posterior inference and (ii) back propagation over a deep architecture together with stochastic gradient/mirror descent for model parameter estimation, leading to scalable and end-to-end discriminative learning of the model. As a byproduct, we also apply this technique to develop a new learning method for the traditional unsupervised LDA model (i.e., BP-LDA). Experimental results on three real-world regression and classification tasks show that the proposed methods significantly outperform the previous supervised topic models, neural networks, and is on par with deep neural networks.