He, Hao
Performance Evaluation of Large Language Models in Statistical Programming
Song, Xinyi, Xie, Kexin, Lee, Lina, Chen, Ruizhe, Clark, Jared M., He, Hao, He, Haoran, Min, Jie, Zhang, Xinlei, Zheng, Simin, Zhang, Zhiyang, Deng, Xinwei, Hong, Yili
The programming capabilities of large language models (LLMs) have revolutionized automatic code generation and opened new avenues for automatic statistical analysis. However, the validity and quality of these generated codes need to be systematically evaluated before they can be widely adopted. Despite their growing prominence, a comprehensive evaluation of statistical code generated by LLMs remains scarce in the literature. In this paper, we assess the performance of LLMs, including two versions of ChatGPT and one version of Llama, in the domain of SAS programming for statistical analysis. Our study utilizes a set of statistical analysis tasks encompassing diverse statistical topics and datasets. Each task includes a problem description, dataset information, and human-verified SAS code. We conduct a comprehensive assessment of the quality of SAS code generated by LLMs through human expert evaluation based on correctness, effectiveness, readability, executability, and the accuracy of output results. The analysis of rating scores reveals that while LLMs demonstrate usefulness in generating syntactically correct code, they struggle with tasks requiring deep domain understanding and may produce redundant or incorrect results. This study offers valuable insights into the capabilities and limitations of LLMs in statistical programming, providing guidance for future advancements in AI-assisted coding systems for statistical analysis.
Humanity's Last Exam
Phan, Long, Gatti, Alice, Han, Ziwen, Li, Nathaniel, Hu, Josephina, Zhang, Hugh, Zhang, Chen Bo Calvin, Shaaban, Mohamed, Ling, John, Shi, Sean, Choi, Michael, Agrawal, Anish, Chopra, Arnav, Khoja, Adam, Kim, Ryan, Ren, Richard, Hausenloy, Jason, Zhang, Oliver, Mazeika, Mantas, Nguyen, Tung, Anderson, Daron, Shah, Imad Ali, Doroshenko, Mikhail, Stokes, Alun Cennyth, Mahmood, Mobeen, Lee, Jaeho, Pokutnyi, Oleksandr, Iskra, Oleg, Wang, Jessica P., Gerbicz, Robert, Levin, John-Clark, Popov, Serguei, Feng, Fiona, Feng, Steven Y., Zhao, Haoran, Yu, Michael, Gangal, Varun, Zou, Chelsea, Wang, Zihan, Kazakov, Mstyslav, Galgon, Geoff, Schmitt, Johannes, Sanchez, Alvaro, Lee, Yongki, Yeadon, Will, Sauers, Scott, Roth, Marc, Agu, Chidozie, Riis, Sรธren, Giska, Fabian, Utpala, Saiteja, Cheatom, Antrell, Giboney, Zachary, Goshu, Gashaw M., Crowson, Sarah-Jane, Naiya, Mohinder Maheshbhai, Burns, Noah, Finke, Lennart, Cheng, Zerui, Park, Hyunwoo, Fournier-Facio, Francesco, Zampese, Jennifer, Wydallis, John, Wydallis, John B., Hoerr, Ryan G., Nandor, Mark, Gehrunger, Tim, Cai, Jiaqi, McCarty, Ben, Nam, Jungbae, Taylor, Edwin, Jin, Jun, Loume, Gautier Abou, Cao, Hangrui, Garretson, Alexis C, Sileo, Damien, Ren, Qiuyu, Cojoc, Doru, Arkhipov, Pavel, Qazi, Usman, Bacho, Aras, Li, Lianghui, Motwani, Sumeet, de Witt, Christian Schroeder, Kopylov, Alexei, Veith, Johannes, Singer, Eric, Rissone, Paolo, Jin, Jaehyeok, Shi, Jack Wei Lun, Willcocks, Chris G., Prabhu, Ameya, Tang, Longke, Zhou, Kevin, Santos, Emily de Oliveira, Maksimov, Andrey Pupasov, Vendrow, Edward, Zenitani, Kengo, Robinson, Joshua, Mikov, Aleksandar, Guillod, Julien, Li, Yuqi, Pageler, Ben, Vendrow, Joshua, Kuchkin, Vladyslav, Marion, Pierre, Efremov, Denis, Lynch, Jayson, Liang, Kaiqu, Gritsevskiy, Andrew, Martinez, Dakotah, Crispino, Nick, Zvonkine, Dimitri, Fraga, Natanael Wildner, Soori, Saeed, Press, Ori, Tang, Henry, Salazar, Julian, Green, Sean R., Brรผssel, Lina, Twayana, Moon, Dieuleveut, Aymeric, Rogers, T. Ryan, Zhang, Wenjin, Finocchio, Ross, Li, Bikun, Yang, Jinzhou, Rao, Arun, Loiseau, Gabriel, Kalinin, Mikhail, Lukas, Marco, Manolescu, Ciprian, Stambaugh, Nate, Mishra, Subrata, Kamdoum, Ariel Ghislain Kemogne, Hogg, Tad, Jin, Alvin, Bosio, Carlo, Sun, Gongbo, Coppola, Brian P, Heidinger, Haline, Sayous, Rafael, Ivanov, Stefan, Cavanagh, Joseph M, Shen, Jiawei, Imperial, Joseph Marvin, Schwaller, Philippe, Senthilkuma, Shaipranesh, Bran, Andres M, Algaba, Andres, Verbeken, Brecht, Houte, Kelsey Van den, Van Der Sypt, Lynn, Noever, David, Schut, Lisa, Sucholutsky, Ilia, Zheltonozhskii, Evgenii, Yuan, Qiaochu, Lim, Derek, Stanley, Richard, Sivarajan, Shankar, Yang, Tong, Maar, John, Wykowski, Julian, Oller, Martรญ, Sandlin, Jennifer, Sahu, Anmol, Ardito, Cesare Giulio, Hu, Yuzheng, Dias, Felipe Meneguitti, Kreiman, Tobias, Rawal, Kaivalya, Vilchis, Tobias Garcia, Zu, Yuexuan, Lackner, Martin, Koppel, James, Nguyen, Jeremy, Antonenko, Daniil S., Chern, Steffi, Zhao, Bingchen, Arsene, Pierrot, Ivanov, Sergey, Poลwiata, Rafaล, Wang, Chenguang, Li, Daofeng, Crisostomi, Donato, Dehghan, Ali, Achilleos, Andrea, Ambay, John Arnold, Myklebust, Benjamin, Sen, Archan, Perrella, David, Kaparov, Nurdin, Inlow, Mark H, Zang, Allen, Ramakrishnan, Kalyan, Orel, Daniil, Poritski, Vladislav, Ben-David, Shalev, Berger, Zachary, Whitfill, Parker, Foster, Michael, Munro, Daniel, Ho, Linh, Hava, Dan Bar, Kuchkin, Aleksey, Lauff, Robert, Holmes, David, Sommerhage, Frank, Zhang, Anji, Moat, Richard, Schneider, Keith, Pyda, Daniel, Kazibwe, Zakayo, Singh, Mukhwinder, Clarke, Don, Kim, Dae Hyun, Fish, Sara, Elser, Veit, Vilchis, Victor Efren Guadarrama, Klose, Immo, Demian, Christoph, Anantheswaran, Ujjwala, Zweiger, Adam, Albani, Guglielmo, Li, Jeffery, Daans, Nicolas, Radionov, Maksim, Rozhoล, Vรกclav, Ginis, Vincent, Ma, Ziqiao, Stump, Christian, Platnick, Jacob, Nevirkovets, Volodymyr, Basler, Luke, Piccardo, Marco, Cohen, Niv, Singh, Virendra, Tkadlec, Josef, Rosu, Paul, Goldfarb, Alan, Padlewski, Piotr, Barzowski, Stanislaw, Montgomery, Kyle, Menezes, Aline, Patel, Arkil, Wang, Zixuan, Tucker-Foltz, Jamie, Stade, Jack, Grabb, Declan, Goertzen, Tom, Kazemi, Fereshteh, Milbauer, Jeremiah, Shukla, Abhishek, Elgnainy, Hossam, Labrador, Yan Carlos Leyva, He, Hao, Zhang, Ling, Givrรฉ, Alan, Wolff, Hew, Demir, Gรถzdenur, Aziz, Muhammad Fayez, Kaddar, Younesse, รngquist, Ivar, Chen, Yanxu, Thornley, Elliott, Zhang, Robin, Pan, Jiayi, Terpin, Antonio, Muennighoff, Niklas, Schoelkopf, Hailey, Zheng, Eric, Carmi, Avishy, Shah, Jainam, Brown, Ethan D. L., Zhu, Kelin, Bartolo, Max, Wheeler, Richard, Ho, Andrew, Barkan, Shaul, Wang, Jiaqi, Stehberger, Martin, Kretov, Egor, Bradshaw, Peter, Heimonen, JP, Sridhar, Kaustubh, Hossain, Zaki, Akov, Ido, Makarychev, Yury, Tam, Joanna, Hoang, Hieu, Cunningham, David M., Goryachev, Vladimir, Patramanis, Demosthenes, Krause, Michael, Redenti, Andrew, Aldous, David, Lai, Jesyin, Coleman, Shannon, Xu, Jiangnan, Lee, Sangwon, Magoulas, Ilias, Zhao, Sandy, Tang, Ning, Cohen, Michael K., Carroll, Micah, Paradise, Orr, Kirchner, Jan Hendrik, Steinerberger, Stefan, Ovchynnikov, Maksym, Matos, Jason O., Shenoy, Adithya, Wang, Michael, Nie, Yuzhou, Giordano, Paolo, Petersen, Philipp, Sztyber-Betley, Anna, Faraboschi, Paolo, Riblet, Robin, Crozier, Jonathan, Halasyamani, Shiv, Pinto, Antonella, Verma, Shreyas, Joshi, Prashant, Meril, Eli, Yong, Zheng-Xin, Tee, Allison, Andrรฉoletti, Jรฉrรฉmy, Weller, Orion, Singhal, Raghav, Zhang, Gang, Ivanov, Alexander, Khoury, Seri, Gustafsson, Nils, Mostaghimi, Hamid, Thaman, Kunvar, Chen, Qijia, Khรกnh, Tran Quoc, Loader, Jacob, Cavalleri, Stefano, Szlyk, Hannah, Brown, Zachary, Narayan, Himanshu, Roberts, Jonathan, Alley, William, Sun, Kunyang, Stendall, Ryan, Lamparth, Max, Reuel, Anka, Wang, Ting, Xu, Hanmeng, Hernรกndez-Cรกmara, Pablo, Martin, Freddie, Preu, Thomas, Korbak, Tomek, Abramovitch, Marcus, Williamson, Dominic, Bosio, Ida, Chen, Ziye, Bรกlint, Birรณ, Lo, Eve J. Y., Nunes, Maria Inรชs S., Jiang, Yibo, Bari, M Saiful, Kassani, Peyman, Wang, Zihao, Ansarinejad, Behzad, Sun, Yewen, Durand, Stephane, Douville, Guillaume, Tordera, Daniel, Balabanian, George, Anderson, Earth, Kvistad, Lynna, Moyano, Alejandro Josรฉ, Milliron, Hsiaoyun, Sakor, Ahmad, Eron, Murat, McAlister, Isaac C., O., Andrew Favre D., Shah, Shailesh, Zhou, Xiaoxiang, Kamalov, Firuz, Clark, Ronald, Abdoli, Sherwin, Santens, Tim, Wang, Harrison K, Chen, Evan, Tomasiello, Alessandro, De Luca, G. Bruno, Looi, Shi-Zhuo, Le, Vinh-Kha, Kolt, Noam, Mรผndler, Niels, Semler, Avi, Rodman, Emma, Drori, Jacob, Fossum, Carl J, Gloor, Luk, Jagota, Milind, Pradeep, Ronak, Fan, Honglu, Shah, Tej, Eicher, Jonathan, Chen, Michael, Thaman, Kushal, Merrill, William, Firsching, Moritz, Harris, Carter, Ciobรขcฤ, Stefan, Gross, Jason, Pandey, Rohan, Gusev, Ilya, Jones, Adam, Agnihotri, Shashank, Zhelnov, Pavel, Usawasutsakorn, Siranut, Mofayezi, Mohammadreza, Piperski, Alexander, Carauleanu, Marc, Zhang, David K., Dobarskyi, Kostiantyn, Ler, Dylan, Leventov, Roman, Soroko, Ignat, Jansen, Thorben, Creighton, Scott, Lauer, Pascal, Duersch, Joshua, Taamazyan, Vage, Bezzi, Dario, Morak, Wiktor, Ma, Wenjie, Held, William, Huy, Tran ฤuc, Xian, Ruicheng, Zebaze, Armel Randy, Mohamed, Mohanad, Leser, Julian Noah, Yuan, Michelle X, Yacar, Laila, Lengler, Johannes, Olszewska, Katarzyna, Shahrtash, Hossein, Oliveira, Edson, Jackson, Joseph W., Gonzalez, Daniel Espinosa, Zou, Andy, Chidambaram, Muthu, Manik, Timothy, Haffenden, Hector, Stander, Dashiell, Dasouqi, Ali, Shen, Alexander, Duc, Emilien, Golshani, Bita, Stap, David, Uzhou, Mikalai, Zhidkovskaya, Alina Borisovna, Lewark, Lukas, Rodriguez, Miguel Orbegozo, Vincze, Mรกtyรกs, Wehr, Dustin, Tang, Colin, Phillips, Shaun, Samuele, Fortuna, Muzhen, Jiang, Ekstrรถm, Fredrik, Hammon, Angela, Patel, Oam, Farhidi, Faraz, Medley, George, Mohammadzadeh, Forough, Peรฑaflor, Madellene, Kassahun, Haile, Friedrich, Alena, Sparrow, Claire, Perez, Rayner Hernandez, Sakal, Taom, Dhamane, Omkar, Mirabadi, Ali Khajegili, Hallman, Eric, Okutsu, Kenchi, Battaglia, Mike, Maghsoudimehrabani, Mohammad, Amit, Alon, Hulbert, Dave, Pereira, Roberto, Weber, Simon, Handoko, null, Peristyy, Anton, Malina, Stephen, Albanie, Samuel, Cai, Will, Mehkary, Mustafa, Aly, Rami, Reidegeld, Frank, Dick, Anna-Katharina, Friday, Cary, Sidhu, Jasdeep, Shapourian, Hassan, Kim, Wanyoung, Costa, Mariana, Gurdogan, Hubeyb, Weber, Brian, Kumar, Harsh, Jiang, Tong, Agarwal, Arunim, Ceconello, Chiara, Vaz, Warren S., Zhuang, Chao, Park, Haon, Tawfeek, Andrew R., Aggarwal, Daattavya, Kirchhof, Michael, Dai, Linjie, Kim, Evan, Ferret, Johan, Wang, Yuzhou, Yan, Minghao, Burdzy, Krzysztof, Zhang, Lixin, Franca, Antonio, Pham, Diana T., Loh, Kang Yong, Robinson, Joshua, Jackson, Abram, Gul, Shreen, Chhablani, Gunjan, Du, Zhehang, Cosma, Adrian, Colino, Jesus, White, Colin, Votava, Jacob, Vinnikov, Vladimir, Delaney, Ethan, Spelda, Petr, Stritecky, Vit, Shahid, Syed M., Mourrat, Jean-Christophe, Vetoshkin, Lavr, Sponselee, Koen, Bacho, Renas, de la Rosa, Florencia, Li, Xiuyu, Malod, Guillaume, Lang, Leon, Laurendeau, Julien, Kazakov, Dmitry, Adesanya, Fatimah, Portier, Julien, Hollom, Lawrence, Souza, Victor, Zhou, Yuchen Anna, Degorre, Julien, Yalฤฑn, Yiฤit, Obikoya, Gbenga Daniel, Arnaboldi, Luca, Rai, null, Bigi, Filippo, Boscรก, M. C., Shumar, Oleg, Bacho, Kaniuar, Clavier, Pierre, Recchia, Gabriel, Popescu, Mara, Shulga, Nikita, Tanwie, Ngefor Mildred, Peskoff, Denis, Lux, Thomas C. H., Rank, Ben, Ni, Colin, Brooks, Matthew, Yakimchyk, Alesia, Huanxu, null, Liu, null, Hรคggstrรถm, Olle, Verkama, Emil, Gundlach, Hans, Brito-Santana, Leonor, Amaro, Brian, Vajipey, Vivek, Grover, Rynaa, Fan, Yiyang, Silva, Gabriel Poesia Reis e, Xin, Linwei, Kratish, Yosi, ลucki, Jakub, Li, Wen-Ding, Gopi, Sivakanth, Caciolai, Andrea, Xu, Justin, Scaria, Kevin Joseph, Vargus, Freddie, Habibi, Farzad, Long, null, Lian, null, Rodolร , Emanuele, Robins, Jules, Cheng, Vincent, Fruhauff, Tony, Raynor, Brad, Qi, Hao, Jiang, Xi, Segev, Ben, Fan, Jingxuan, Martinson, Sarah, Wang, Erik Y., Hausknecht, Kaylie, Brenner, Michael P., Mao, Mao, Zhang, Xinyu, Avagian, David, Scipio, Eshawn Jessica, Ragoler, Alon, Tan, Justin, Sims, Blake, Plecnik, Rebeka, Kirtland, Aaron, Bodur, Omer Faruk, Shinde, D. P., Adoul, Zahra, Zekry, Mohamed, Karakoc, Ali, Santos, Tania C. B., Shamseldeen, Samir, Karim, Loukmane, Liakhovitskaia, Anna, Resman, Nate, Farina, Nicholas, Gonzalez, Juan Carlos, Maayan, Gabe, Hoback, Sarah, Pena, Rodrigo De Oliveira, Sherman, Glen, Kelley, Elizabeth, Mariji, Hodjat, Pouriamanesh, Rasoul, Wu, Wentao, Mendoza, Sandra, Alarab, Ismail, Cole, Joshua, Ferreira, Danyelle, Johnson, Bryan, Safdari, Mohammad, Dai, Liangti, Arthornthurasuk, Siriphan, Pronin, Alexey, Fan, Jing, Ramirez-Trinidad, Angel, Cartwright, Ashley, Pottmaier, Daphiny, Taheri, Omid, Outevsky, David, Stepanic, Stanley, Perry, Samuel, Askew, Luke, Rodrรญguez, Raรบl Adriรกn Huerta, Minissi, Ali M. R., Ali, Sam, Lorena, Ricardo, Iyer, Krishnamurthy, Fasiludeen, Arshad Anil, Salauddin, Sk Md, Islam, Murat, Gonzalez, Juan, Ducey, Josh, Somrak, Maja, Mavroudis, Vasilios, Vergo, Eric, Qin, Juehang, Borbรกs, Benjรกmin, Chu, Eric, Lindsey, Jack, Radhakrishnan, Anil, Jallon, Antoine, McInnis, I. M. J., Kumar, Pawan, Goswami, Laxman Prasad, Bugas, Daniel, Heydari, Nasser, Jeanplong, Ferenc, Apronti, Archimedes, Galal, Abdallah, Ze-An, Ng, Singh, Ankit, Xavier, Joan of Arc, Agarwal, Kanu Priya, Berkani, Mohammed, Junior, Benedito Alves de Oliveira, Malishev, Dmitry, Remy, Nicolas, Hartman, Taylor D., Tarver, Tim, Mensah, Stephen, Gimenez, Javier, Montecillo, Roselynn Grace, Campbell, Russell, Sharma, Asankhaya, Meer, Khalida, Alapont, Xavier, Patil, Deepakkumar, Maheshwari, Rajat, Dendane, Abdelkader, Shukla, Priti, Bogdanov, Sergei, Mรถller, Sรถren, Siddiqi, Muhammad Rehan, Saxena, Prajvi, Gupta, Himanshu, Enyekwe, Innocent, P, Ragavendran V, EL-Wasif, Zienab, Maksapetyan, Aleksandr, Rossbach, Vivien, Harjadi, Chris, Bahaloohoreh, Mohsen, Bian, Song, Lai, John, Uro, Justine Leon, Bateman, Greg, Sayed, Mohamed, Menshawy, Ahmed, Duclosel, Darling, Jain, Yashaswini, Aaron, Ashley, Tiryakioglu, Murat, Siddh, Sheeshram, Krenek, Keith, Hoover, Alex, McGowan, Joseph, Patwardhan, Tejal, Yue, Summer, Wang, Alexandr, Hendrycks, Dan
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
Hypothesis Testing Prompting Improves Deductive Reasoning in Large Language Models
Li, Yitian, Tian, Jidong, He, Hao, Jin, Yaohui
Combining different forms of prompts with pre-trained large language models has yielded remarkable results on reasoning tasks (e.g. Chain-of-Thought prompting). However, along with testing on more complex reasoning, these methods also expose problems such as invalid reasoning and fictional reasoning paths. In this paper, we develop \textit{Hypothesis Testing Prompting}, which adds conclusion assumptions, backward reasoning, and fact verification during intermediate reasoning steps. \textit{Hypothesis Testing prompting} involves multiple assumptions and reverses validation of conclusions leading to its unique correct answer. Experiments on two challenging deductive reasoning datasets ProofWriter and RuleTaker show that hypothesis testing prompting not only significantly improves the effect, but also generates a more reasonable and standardized reasoning process.
Logical Negation Augmenting and Debiasing for Prompt-based Methods
Li, Yitian, Tian, Jidong, He, Hao, Jin, Yaohui
Prompt-based methods have gained increasing attention on NLP and shown validity on many downstream tasks. Many works have focused on mining these methods' potential for knowledge extraction, but few explore their ability to make logical reasoning. In this work, we focus on the effectiveness of the prompt-based methods on first-order logical reasoning and find that the bottleneck lies in logical negation. Based on our analysis, logical negation tends to result in spurious correlations to negative answers, while propositions without logical negation correlate to positive answers. To solve the problem, we propose a simple but effective method, Negation Augmenting and Negation Debiasing (NAND), which introduces negative propositions to prompt-based methods without updating parameters. Specifically, these negative propositions can counteract spurious correlations by providing "not" for all instances so that models cannot make decisions only by whether expressions contain a logical negation. Experiments on three datasets show that NAND not only solves the problem of calibrating logical negation but also significantly enhances prompt-based methods of logical reasoning without model retraining.
Look Before You Leap: Problem Elaboration Prompting Improves Mathematical Reasoning in Large Language Models
Liao, Haoran, Tian, Jidong, Hu, Shaohua, He, Hao, Jin, Yaohui
Large language models (LLMs) still grapple with complex tasks like mathematical reasoning. Despite significant efforts invested in improving prefix prompts or reasoning process, the crucial role of problem context might have been neglected. Accurate recognition of inputs is fundamental for solving mathematical tasks, as ill-formed problems could potentially mislead LLM's reasoning. In this study, we propose a new approach named Problem Elaboration Prompting (PEP) to enhance the mathematical capacities of LLMs. Specifically, PEP decomposes and elucidates the problem context before reasoning, therefore enhancing the context modeling and parsing efficiency. Experiments across datasets and models demonstrate promising performances: (1) PEP demonstrates an overall enhancement in various mathematical tasks. For instance, with the GPT-3.5 model, PEP exhibits improvements of 9.93% and 8.80% on GSM8k through greedy decoding and self-consistency, respectively. (2) PEP can be easily implemented and integrated with other prompting methods. (3) PEP shows particular strength in handling distraction problems.
Comparable Demonstrations are Important in In-Context Learning: A Novel Perspective on Demonstration Selection
Fan, Caoyun, Tian, Jidong, Li, Yitian, He, Hao, Jin, Yaohui
In-Context Learning (ICL) is an important paradigm for adapting Large Language Models (LLMs) to downstream tasks through a few demonstrations. Despite the great success of ICL, the limitation of the demonstration number may lead to demonstration bias, i.e. the input-label mapping induced by LLMs misunderstands the task's essence. Inspired by human experience, we attempt to mitigate such bias through the perspective of the inter-demonstration relationship. Specifically, we construct Comparable Demonstrations (CDs) by minimally editing the texts to flip the corresponding labels, in order to highlight the task's essence and eliminate potential spurious correlations through the inter-demonstration comparison. Through a series of experiments on CDs, we find that (1) demonstration bias does exist in LLMs, and CDs can significantly reduce such bias; (2) CDs exhibit good performance in ICL, especially in out-of-distribution scenarios. In summary, this study explores the ICL mechanisms from a novel perspective, providing a deeper insight into the demonstration selection strategy for ICL.
Randomized algorithms for precise measurement of differentially-private, personalized recommendations
Laro, Allegra, Chen, Yanqing, He, Hao, Aghazadeh, Babak
Personalized recommendations form an important part of today's internet ecosystem, helping artists and creators to reach interested users, and helping users to discover new and engaging content. However, many users today are skeptical of platforms that personalize recommendations, in part due to historically careless treatment of personal data and data privacy. Now, businesses that rely on personalized recommendations are entering a new paradigm, where many of their systems must be overhauled to be privacy-first. In this article, we propose an algorithm for personalized recommendations that facilitates both precise and differentially-private measurement. We consider advertising as an example application, and conduct offline experiments to quantify how the proposed privacy-preserving algorithm affects key metrics related to user experience, advertiser value, and platform revenue compared to the extremes of both (private) non-personalized and non-private, personalized implementations.
Understanding LLMs: A Comprehensive Overview from Training to Inference
Liu, Yiheng, He, Hao, Han, Tianle, Zhang, Xu, Liu, Mengyuan, Tian, Jiaming, Zhang, Yutong, Wang, Jiaqi, Gao, Xiaohui, Zhong, Tianyang, Pan, Yi, Xu, Shaochen, Wu, Zihao, Liu, Zhengliang, Zhang, Xin, Zhang, Shu, Hu, Xintao, Zhang, Tuo, Qiang, Ning, Liu, Tianming, Ge, Bao
The introduction of ChatGPT has led to a significant increase in the utilization of Large Language Models (LLMs) for addressing downstream tasks. There's an increasing focus on cost-efficient training and deployment within this context. Low-cost training and deployment of LLMs represent the future development trend. This paper reviews the evolution of large language model training techniques and inference deployment technologies aligned with this emerging trend. The discussion on training includes various aspects, including data preprocessing, training architecture, pre-training tasks, parallel training, and relevant content related to model fine-tuning. On the inference side, the paper covers topics such as model compression, parallel computation, memory scheduling, and structural optimization. It also explores LLMs' utilization and provides insights into their future development.
Modeling Complex Mathematical Reasoning via Large Language Model based MathAgent
Liao, Haoran, Du, Qinyi, Hu, Shaohua, He, Hao, Xu, Yanyan, Tian, Jidong, Jin, Yaohui
Large language models (LLMs) face challenges in solving complex mathematical problems that require comprehensive capacities to parse the statements, associate domain knowledge, perform compound logical reasoning, and integrate the intermediate rationales. Tackling all these problems once could be arduous for LLMs, thus leading to confusion in generation. In this work, we explore the potential of enhancing LLMs with agents by meticulous decomposition and modeling of mathematical reasoning process. Specifically, we propose a formal description of the mathematical solving and extend LLMs with an agent-based zero-shot framework named $\bf{P}$lanner-$\bf{R}$easoner-$\bf{E}$xecutor-$\bf{R}$eflector (PRER). We further provide and implement two MathAgents that define the logical forms and inherent relations via a pool of actions in different grains and orientations: MathAgent-M adapts its actions to LLMs, while MathAgent-H aligns with humankind. Experiments on miniF2F and MATH have demonstrated the effectiveness of PRER and proposed MathAgents, achieving an increase of $12.3\%$($53.9\%\xrightarrow{}66.2\%$) on the MiniF2F, $9.2\%$ ($49.8\%\xrightarrow{}59.0\%$) on MATH, and $13.2\%$($23.2\%\xrightarrow{}35.4\%$) for level-5 problems of MATH against GPT-4. Further analytical results provide more insightful perspectives on exploiting the behaviors of LLMs as agents.
Can Large Language Models Serve as Rational Players in Game Theory? A Systematic Analysis
Fan, Caoyun, Chen, Jindou, Jin, Yaohui, He, Hao
Game theory, as an analytical tool, is frequently utilized to analyze human behavior in social science research. With the high alignment between the behavior of Large Language Models (LLMs) and humans, a promising research direction is to employ LLMs as substitutes for humans in game experiments, enabling social science research. However, despite numerous empirical researches on the combination of LLMs and game theory, the capability boundaries of LLMs in game theory remain unclear. In this research, we endeavor to systematically analyze LLMs in the context of game theory. Specifically, rationality, as the fundamental principle of game theory, serves as the metric for evaluating players' behavior -- building a clear desire, refining belief about uncertainty, and taking optimal actions. Accordingly, we select three classical games (dictator game, Rock-Paper-Scissors, and ring-network game) to analyze to what extent LLMs can achieve rationality in these three aspects. The experimental results indicate that even the current state-of-the-art LLM (GPT-4) exhibits substantial disparities compared to humans in game theory. For instance, LLMs struggle to build desires based on uncommon preferences, fail to refine belief from many simple patterns, and may overlook or modify refined belief when taking actions. Therefore, we consider that introducing LLMs into game experiments in the field of social science should be approached with greater caution.