Goto

Collaborating Authors

 He, Erfeng


Recent Advances in End-to-End Simultaneous Speech Translation

arXiv.org Artificial Intelligence

Simultaneous speech translation (SimulST) is a demanding task that involves generating translations in real-time while continuously processing speech input. This paper offers a comprehensive overview of the recent developments in SimulST research, focusing on four major challenges. Firstly, the complexities associated with processing lengthy and continuous speech streams pose significant hurdles. Secondly, satisfying real-time requirements presents inherent difficulties due to the need for immediate translation output. Thirdly, striking a balance between translation quality and latency constraints remains a critical challenge. Finally, the scarcity of annotated data adds another layer of complexity to the task. Through our exploration of these challenges and the proposed solutions, we aim to provide valuable insights into the current landscape of SimulST research and suggest promising directions for future exploration.


Bridging the Gaps of Both Modality and Language: Synchronous Bilingual CTC for Speech Translation and Speech Recognition

arXiv.org Artificial Intelligence

In this study, we present synchronous bilingual Connectionist Temporal Classification (CTC), an innovative framework that leverages dual CTC to bridge the gaps of both modality and language in the speech translation (ST) task. Utilizing transcript and translation as concurrent objectives for CTC, our model bridges the gap between audio and text as well as between source and target languages. Building upon the recent advances in CTC application, we develop an enhanced variant, BiL-CTC+, that establishes new state-of-the-art performances on the MuST-C ST benchmarks under resource-constrained scenarios. Intriguingly, our method also yields significant improvements in speech recognition performance, revealing the effect of cross-lingual learning on transcription and demonstrating its broad applicability. The source code is available at https://github.com/xuchennlp/S2T.