Goto

Collaborating Authors

 He, Chloe


Robotic Arm Platform for Multi-View Image Acquisition and 3D Reconstruction in Minimally Invasive Surgery

arXiv.org Artificial Intelligence

Minimally invasive surgery (MIS) offers significant benefits such as reduced recovery time and minimised patient trauma, but poses challenges in visibility and access, making accurate 3D reconstruction a significant tool in surgical planning and navigation. This work introduces a robotic arm platform for efficient multi-view image acquisition and precise 3D reconstruction in MIS settings. We adapted a laparoscope to a robotic arm and captured ex-vivo images of several ovine organs across varying lighting conditions (operating room and laparoscopic) and trajectories (spherical and laparoscopic). We employed recently released learning-based feature matchers combined with COLMAP to produce our reconstructions. The reconstructions were evaluated against high-precision laser scans for quantitative evaluation. Our results show that whilst reconstructions suffer most under realistic MIS lighting and trajectory, many versions of our pipeline achieve close to sub-millimetre accuracy with an average of 1.05 mm Root Mean Squared Error and 0.82 mm Chamfer distance. Our best reconstruction results occur with operating room lighting and spherical trajectories. Our robotic platform provides a tool for controlled, repeatable multi-view data acquisition for 3D generation in MIS environments which we hope leads to new datasets for training learning-based models.


Do Androids Dream of Electric Fences? Safety-Aware Reinforcement Learning with Latent Shielding

arXiv.org Artificial Intelligence

The growing trend of fledgling reinforcement learning systems making their way into real-world applications has been accompanied by growing concerns for their safety and robustness. In recent years, a variety of approaches have been put forward to address the challenges of safety-aware reinforcement learning; however, these methods often either require a handcrafted model of the environment to be provided beforehand, or that the environment is relatively simple and low-dimensional. We present a novel approach to safety-aware deep reinforcement learning in high-dimensional environments called latent shielding. Latent shielding leverages internal representations of the environment learnt by model-based agents to "imagine" future trajectories and avoid those deemed unsafe. We experimentally demonstrate that this approach leads to improved adherence to formally-defined safety specifications.


Beyond NDCG: behavioral testing of recommender systems with RecList

arXiv.org Artificial Intelligence

As with most Machine Learning systems, recommender systems are typically evaluated through performance metrics computed over held-out data points. However, real-world behavior is undoubtedly nuanced: ad hoc error analysis and deployment-specific tests must be employed to ensure the desired quality in actual deployments. In this paper, we propose RecList, a behavioral-based testing methodology. RecList organizes recommender systems by use case and introduces a general plug-and-play procedure to scale up behavioral testing. We demonstrate its capabilities by analyzing known algorithms and black-box commercial systems, and we release RecList as an open source, extensible package for the community.


Semantic Video Segmentation for Intracytoplasmic Sperm Injection Procedures

arXiv.org Artificial Intelligence

We present the first deep learning model for the analysis of intracytoplasmic sperm injection (ICSI) procedures. Using a dataset of ICSI procedure videos, we train a deep neural network to segment key objects in the videos achieving a mean IoU of 0.962, and to localize the needle tip achieving a mean pixel error of 3.793 pixels at 14 FPS on a single GPU. We further analyze the variation between the dataset's human annotators and find the model's performance to be comparable to human experts.


Unsupervised Representations of Pollen in Bright-Field Microscopy

arXiv.org Artificial Intelligence

We present the first unsupervised deep learning method for pollen analysis using bright-field microscopy. Using a modest dataset of 650 images of pollen grains collected from honey, we achieve family level identification of pollen. We embed images of pollen grains into a low-dimensional latent space and compare Euclidean and Riemannian metrics on these spaces for clustering. We propose this system for automated analysis of pollen and other microscopic biological structures which have only small or unlabelled datasets available.


Honey Authentication with Machine Learning Augmented Bright-Field Microscopy

arXiv.org Artificial Intelligence

Honey has been collected and used by humankind as both a food and medicine for thousands of years. However, in the modern economy, honey has become subject to mislabelling and adulteration making it the third most faked food product in the world. The international scale of fraudulent honey has had both economic and environmental ramifications. In this paper, we propose a novel method of identifying fraudulent honey using machine learning augmented microscopy.