Goto

Collaborating Authors

 He, Chengyang


SIGMA: Sheaf-Informed Geometric Multi-Agent Pathfinding

arXiv.org Artificial Intelligence

The Multi-Agent Path Finding (MAPF) problem aims to determine the shortest and collision-free paths for multiple agents in a known, potentially obstacle-ridden environment. It is the core challenge for robotic deployments in large-scale logistics and transportation. Decentralized learning-based approaches have shown great potential for addressing the MAPF problems, offering more reactive and scalable solutions. However, existing learning-based MAPF methods usually rely on agents making decisions based on a limited field of view (FOV), resulting in short-sighted policies and inefficient cooperation in complex scenarios. There, a critical challenge is to achieve consensus on potential movements between agents based on limited observations and communications. To tackle this challenge, we introduce a new framework that applies sheaf theory to decentralized deep reinforcement learning, enabling agents to learn geometric cross-dependencies between each other through local consensus and utilize them for tightly cooperative decision-making. In particular, sheaf theory provides a mathematical proof of conditions for achieving global consensus through local observation. Inspired by this, we incorporate a neural network to approximately model the consensus in latent space based on sheaf theory and train it through self-supervised learning. During the task, in addition to normal features for MAPF as in previous works, each agent distributedly reasons about a learned consensus feature, leading to efficient cooperation on pathfinding and collision avoidance. As a result, our proposed method demonstrates significant improvements over state-of-the-art learning-based MAPF planners, especially in relatively large and complex scenarios, demonstrating its superiority over baselines in various simulations and real-world robot experiments.


Understanding Student Sentiment on Mental Health Support in Colleges Using Large Language Models

arXiv.org Artificial Intelligence

Mental health support in colleges is vital in educating students by offering counseling services and organizing supportive events. However, evaluating its effectiveness faces challenges like data collection difficulties and lack of standardized metrics, limiting research scope. Student feedback is crucial for evaluation but often relies on qualitative analysis without systematic investigation using advanced machine learning methods. This paper uses public Student Voice Survey data to analyze student sentiments on mental health support with large language models (LLMs). We created a sentiment analysis dataset, SMILE-College, with human-machine collaboration. The investigation of both traditional machine learning methods and state-of-the-art LLMs showed the best performance of GPT-3.5 and BERT on this new dataset. The analysis highlights challenges in accurately predicting response sentiments and offers practical insights on how LLMs can enhance mental health-related research and improve college mental health services. This data-driven approach will facilitate efficient and informed mental health support evaluation, management, and decision-making.


ALPHA: Attention-based Long-horizon Pathfinding in Highly-structured Areas

arXiv.org Artificial Intelligence

The multi-agent pathfinding (MAPF) problem seeks collision-free paths for a team of agents from their current positions to their pre-set goals in a known environment, and is an essential problem found at the core of many logistics, transportation, and general robotics applications. Existing learning-based MAPF approaches typically only let each agent make decisions based on a limited field-of-view (FOV) around its position, as a natural means to fix the input dimensions of its policy network. However, this often makes policies short-sighted, since agents lack the ability to perceive and plan for obstacles/agents beyond their FOV. To address this challenge, we propose ALPHA, a new framework combining the use of ground truth proximal (local) information and fuzzy distal (global) information to let agents sequence local decisions based on the full current state of the system, and avoid such myopicity. We further allow agents to make short-term predictions about each others' paths, as a means to reason about each others' path intentions, thereby enhancing the level of cooperation among agents at the whole system level. Our neural structure relies on a Graph Transformer architecture to allow agents to selectively combine these different sources of information and reason about their inter-dependencies at different spatial scales. Our simulation experiments demonstrate that ALPHA outperforms both globally-guided MAPF solvers and communication-learning based ones, showcasing its potential towards scalability in realistic deployments.