Plotting

 Hawes, Nick


Decremental Dynamics Planning for Robot Navigation

arXiv.org Artificial Intelligence

-- Most, if not all, robot navigation systems employ a decomposed planning framework that includes global and local planning. T o trade-off onboard computation and plan quality, current systems have to limit all robot dynamics considerations only within the local planner, while leveraging an extremely simplified robot representation (e.g., a point-mass holonomic model without dynamics) in the global level. However, such an artificial decomposition based on either full or zero consideration of robot dynamics can lead to gaps between the two levels, e.g., a global path based on a holonomic point-mass model may not be realizable by a non-holonomic robot, especially in highly constrained obstacle environments. T o validate the effectiveness of this paradigm, we augment three different planners with DDP and show overall improved planning performance. Navigation is a fundamental capability for autonomous mobile robots, enabling them to effectively traverse complex environments without collisions. As the demand for robotic systems grows across various domains, such as industrial automation, search and rescue, and autonomous delivery, the need for efficient and robust navigation strategies becomes increasingly important. Traditionally, most robot navigation systems adopt a hierarchical planning framework, decomposing the planning process into global and local planning.


Generating Causal Explanations of Vehicular Agent Behavioural Interactions with Learnt Reward Profiles

arXiv.org Artificial Intelligence

Abstract-- Transparency and explainability are important features that responsible autonomous vehicles should possess, particularly when interacting with humans, and causal reasoning offers a strong basis to provide these qualities. However, even if one assumes agents act to maximise some concept of reward, it is difficult to make accurate causal inferences of agent planning without capturing what is of importance to the agent. Thus our work aims to learn a weighting of reward metrics for agents such that explanations for agent interactions can be causally inferred. From here it is trivial to generate a textual explanation such as: "Red overtaking Autonomous systems are becoming increasingly prevalent in our day-to-day lives. Hence we ought to understand cause and effect in relation to their behaviour and the behaviour of others.


LUMOS: Language-Conditioned Imitation Learning with World Models

arXiv.org Artificial Intelligence

We introduce LUMOS, a language-conditioned multi-task imitation learning framework for robotics. LUMOS learns skills by practicing them over many long-horizon rollouts in the latent space of a learned world model and transfers these skills zero-shot to a real robot. By learning on-policy in the latent space of the learned world model, our algorithm mitigates policy-induced distribution shift which most offline imitation learning methods suffer from. LUMOS learns from unstructured play data with fewer than 1% hindsight language annotations but is steerable with language commands at test time. We achieve this coherent long-horizon performance by combining latent planning with both image- and language-based hindsight goal relabeling during training, and by optimizing an intrinsic reward defined in the latent space of the world model over multiple time steps, effectively reducing covariate shift. In experiments on the difficult long-horizon CALVIN benchmark, LUMOS outperforms prior learning-based methods with comparable approaches on chained multi-task evaluations. To the best of our knowledge, we are the first to learn a language-conditioned continuous visuomotor control for a real-world robot within an offline world model. Videos, dataset and code are available at http://lumos.cs.uni-freiburg.de.


Joint Decision-Making in Robot Teleoperation: When are Two Heads Better Than One?

arXiv.org Artificial Intelligence

--Operators working with robots in safety-critical domains have to make decisions under uncertainty, which remains a challenging problem for a single human operator . An open question is whether two human operators can make better decisions jointly, as compared to a single operator alone. While prior work has shown that two heads are better than one, such studies have been mostly limited to static and passive tasks. We investigate joint decision-making in a dynamic task involving humans teleoperating robots. We conduct a human-subject experiment with N = 100 participants where each participant performed a navigation task with two mobiles robots in simulation. We find that joint decision-making through confidence sharing improves dyad performance beyond the better-performing individual ( p < 0 .0001). Further, we find that the extent of this benefit is regulated both by the skill level of each individual, as well as how well-calibrated their confidence estimates are. Finally, we present findings on characterising the human-human dyad's confidence calibration based on the individuals constituting the dyad. Our findings demonstrate for the first time that two heads are better than one, even on a spatiotemporal task which includes active operator control of robots. I. INTRODUCTION Human operators are increasingly collaborating with robots via teleoperation in domains such as inspection [32, 10, 15, 16, 18, 69], nuclear decommissioning [55, 17], and search and rescue [13, 21, 46, 54]. In these complex environments, operators are often faced with the decision of choosing which robot or robot controller to operate.


The Complexity Dynamics of Grokking

arXiv.org Artificial Intelligence

We investigate the phenomenon of generalization through the lens of compression. In particular, we study the complexity dynamics of neural networks to explain grokking, where networks suddenly transition from memorizing to generalizing solutions long after over-fitting the training data. To this end we introduce a new measure of intrinsic complexity for neural networks based on the theory of Kolmogorov complexity. Tracking this metric throughout network training, we find a consistent pattern in training dynamics, consisting of a rise and fall in complexity. We demonstrate that this corresponds to memorization followed by generalization. Based on insights from rate--distortion theory and the minimum description length principle, we lay out a principled approach to lossy compression of neural networks, and connect our complexity measure to explicit generalization bounds. Based on a careful analysis of information capacity in neural networks, we propose a new regularization method which encourages networks towards low-rank representations by penalizing their spectral entropy, and find that our regularizer outperforms baselines in total compression of the dataset.


Robust Pushing: Exploiting Quasi-static Belief Dynamics and Contact-informed Optimization

arXiv.org Artificial Intelligence

Non-prehensile manipulation such as pushing is typically subject to uncertain, non-smooth dynamics. However, modeling the uncertainty of the dynamics typically results in intractable belief dynamics, making data-efficient planning under uncertainty difficult. This article focuses on the problem of efficiently generating robust open-loop pushing plans. First, we investigate how the belief over object configurations propagates through quasi-static contact dynamics. We exploit the simplified dynamics to predict the variance of the object configuration without sampling from a perturbation distribution. In a sampling-based trajectory optimization algorithm, the gain of the variance is constrained in order to enforce robustness of the plan. Second, we propose an informed trajectory sampling mechanism for drawing robot trajectories that are likely to make contact with the object. This sampling mechanism is shown to significantly improve chances of finding robust solutions, especially when making-and-breaking contacts is required. We demonstrate that the proposed approach is able to synthesize bi-manual pushing trajectories, resulting in successful long-horizon pushing maneuvers without exteroceptive feedback such as vision or tactile feedback. We furthermore deploy the proposed approach in a model-predictive control scheme, demonstrating additional robustness against unmodeled perturbations.


Watching Grass Grow: Long-term Visual Navigation and Mission Planning for Autonomous Biodiversity Monitoring

arXiv.org Artificial Intelligence

We describe a challenging robotics deployment in a complex ecosystem to monitor a rich plant community. The study site is dominated by dynamic grassland vegetation and is thus visually ambiguous and liable to drastic appearance change over the course of a day and especially through the growing season. This dynamism and complexity in appearance seriously impact the stability of the robotics platform, as localisation is a foundational part of that control loop, and so routes must be carefully taught and retaught until autonomy is robust and repeatable. Our system is demonstrated over a 6-week period monitoring the response of grass species to experimental climate change manipulations. We also discuss the applicability of our pipeline to monitor biodiversity in other complex natural settings.


AutoInspect: Towards Long-Term Autonomous Industrial Inspection

arXiv.org Artificial Intelligence

We give an overview of AutoInspect, a ROS-based software system for robust and extensible mission-level autonomy. Over the past three years AutoInspect has been deployed in a variety of environments, including at a mine, a chemical plant, a mock oil rig, decommissioned nuclear power plants, and a fusion reactor for durations ranging from hours to weeks. The system combines robust mapping and localisation with graph-based autonomous navigation, mission execution, and scheduling to achieve a complete autonomous inspection system. The time from arrival at a new site to autonomous mission execution can be under an hour. It is deployed on a Boston Dynamics Spot robot using a custom sensing and compute payload called Frontier. In this work we go into detail of the system's performance in two long-term deployments of 49 days at a robotics test facility, and 35 days at the Joint European Torus (JET) fusion reactor in Oxfordshire, UK.


Monte Carlo Tree Search with Boltzmann Exploration

arXiv.org Artificial Intelligence

Monte-Carlo Tree Search (MCTS) methods, such as Upper Confidence Bound applied to Trees (UCT), are instrumental to automated planning techniques. However, UCT can be slow to explore an optimal action when it initially appears inferior to other actions. Maximum ENtropy Tree-Search (MENTS) incorporates the maximum entropy principle into an MCTS approach, utilising Boltzmann policies to sample actions, naturally encouraging more exploration. In this paper, we highlight a major limitation of MENTS: optimal actions for the maximum entropy objective do not necessarily correspond to optimal actions for the original objective. We introduce two algorithms, Boltzmann Tree Search (BTS) and Decaying ENtropy Tree-Search (DENTS), that address these limitations and preserve the benefits of Boltzmann policies, such as allowing actions to be sampled faster by using the Alias method. Our empirical analysis shows that our algorithms show consistent high performance across several benchmark domains, including the game of Go.


CC-VPSTO: Chance-Constrained Via-Point-based Stochastic Trajectory Optimisation for Safe and Efficient Online Robot Motion Planning

arXiv.org Artificial Intelligence

Safety in the face of uncertainty is a key challenge in robotics. We introduce a real-time capable framework to generate safe and task-efficient robot motions for stochastic control problems. We frame this as a chance-constrained optimisation problem constraining the probability of the controlled system to violate a safety constraint to be below a set threshold. To estimate this probability we propose a Monte--Carlo approximation. We suggest several ways to construct the problem given a fixed number of uncertainty samples, such that it is a reliable over-approximation of the original problem, i.e. any solution to the sample-based problem adheres to the original chance-constraint with high confidence. To solve the resulting problem, we integrate it into our motion planner VP-STO and name the enhanced framework Chance-Constrained (CC)-VPSTO. The strengths of our approach lie in i) its generality, without assumptions on the underlying uncertainty distribution, system dynamics, cost function, or the form of inequality constraints; and ii) its applicability to MPC-settings. We demonstrate the validity and efficiency of our approach on both simulation and real-world robot experiments.