Havens, Timothy C.
Evaluating the Impact of Underwater Image Enhancement on Object Detection Performance: A Comprehensive Study
Awad, Ali, Saleem, Ashraf, Paheding, Sidike, Lucas, Evan, Al-Ratrout, Serein, Havens, Timothy C.
Underwater imagery often suffers from severe degradation that results in low visual quality and object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their impact on underwater object detection, and explore their potential to improve detection performance. To this end, we selected representative underwater image enhancement models covering major enhancement categories and applied them separately to two recent datasets: 1) the Real-World Underwater Object Detection Dataset (RUOD), and 2) the Challenging Underwater Plant Detection Dataset (CUPDD). Following this, we conducted qualitative and quantitative analyses on the enhanced images and developed a quality index (Q-index) to compare the quality distribution of the original and enhanced images. Subsequently, we compared the performance of several YOLO-NAS detection models that are separately trained and tested on the original and enhanced image sets. Then, we performed a correlation study to examine the relationship between enhancement metrics and detection performance. We also analyzed the inference results from the trained detectors presenting cases where enhancement increased the detection performance as well as cases where enhancement revealed missed objects by human annotators. This study suggests that although enhancement generally deteriorates the detection performance, it can still be harnessed in some cases for increased detection performance and more accurate human annotation.
Machine Learning for Shipwreck Segmentation from Side Scan Sonar Imagery: Dataset and Benchmark
Sethuraman, Advaith V., Sheppard, Anja, Bagoren, Onur, Pinnow, Christopher, Anderson, Jamey, Havens, Timothy C., Skinner, Katherine A.
Open-source benchmark datasets have been a critical component for advancing machine learning for robot perception in terrestrial applications. Benchmark datasets enable the widespread development of state-of-the-art machine learning methods, which require large datasets for training, validation, and thorough comparison to competing approaches. Underwater environments impose several operational challenges that hinder efforts to collect large benchmark datasets for marine robot perception. Furthermore, a low abundance of targets of interest relative to the size of the search space leads to increased time and cost required to collect useful datasets for a specific task. As a result, there is limited availability of labeled benchmark datasets for underwater applications. We present the AI4Shipwrecks dataset, which consists of 24 distinct shipwreck sites totaling 286 high-resolution labeled side scan sonar images to advance the state-of-the-art in autonomous sonar image understanding. We leverage the unique abundance of targets in Thunder Bay National Marine Sanctuary in Lake Huron, MI, to collect and compile a sonar imagery benchmark dataset through surveys with an autonomous underwater vehicle (AUV). We consulted with expert marine archaeologists for the labeling of robotically gathered data. We then leverage this dataset to perform benchmark experiments for comparison of state-of-the-art supervised segmentation methods, and we present insights on opportunities and open challenges for the field. The dataset and benchmarking tools will be released as an open-source benchmark dataset to spur innovation in machine learning for Great Lakes and ocean exploration. The dataset and accompanying software are available at https://umfieldrobotics.github.io/ai4shipwrecks/.