Hassan Ashtiani
Disentangled behavioural representations
Amir Dezfouli, Hassan Ashtiani, Omar Ghattas, Richard Nock, Peter Dayan, Cheng Soon Ong
Individual characteristics in human decision-making are often quantified by fitting a parametric cognitive model to subjects' behavior and then studying differences between them in the associated parameter space. However, these models often fit behavior more poorly than recurrent neural networks (RNNs), which are more flexible and make fewer assumptions about the underlying decision-making processes. Unfortunately, the parameter and latent activity spaces of RNNs are generally highdimensional and uninterpretable, making it hard to use them to study individual differences. Here, we show how to benefit from the flexibility of RNNs while representing individual differences in a low-dimensional and interpretable space. To achieve this, we propose a novel end-to-end learning framework in which an encoder is trained to map the behavior of subjects into a low-dimensional latent space. These low-dimensional representations are used to generate the parameters of individual RNNs corresponding to the decision-making process of each subject. We introduce terms into the loss function that ensure that the latent dimensions are informative and disentangled, i.e., encouraged to have distinct effects on behavior. This allows them to align with separate facets of individual differences. We illustrate the performance of our framework on synthetic data as well as a dataset including the behavior of patients with psychiatric disorders.
Disentangled behavioural representations
Amir Dezfouli, Hassan Ashtiani, Omar Ghattas, Richard Nock, Peter Dayan, Cheng Soon Ong
Individual characteristics in human decision-making are often quantified by fitting a parametric cognitive model to subjects' behavior and then studying differences between them in the associated parameter space. However, these models often fit behavior more poorly than recurrent neural networks (RNNs), which are more flexible and make fewer assumptions about the underlying decision-making processes. Unfortunately, the parameter and latent activity spaces of RNNs are generally highdimensional and uninterpretable, making it hard to use them to study individual differences. Here, we show how to benefit from the flexibility of RNNs while representing individual differences in a low-dimensional and interpretable space. To achieve this, we propose a novel end-to-end learning framework in which an encoder is trained to map the behavior of subjects into a low-dimensional latent space. These low-dimensional representations are used to generate the parameters of individual RNNs corresponding to the decision-making process of each subject. We introduce terms into the loss function that ensure that the latent dimensions are informative and disentangled, i.e., encouraged to have distinct effects on behavior. This allows them to align with separate facets of individual differences. We illustrate the performance of our framework on synthetic data as well as a dataset including the behavior of patients with psychiatric disorders.
Clustering with Same-Cluster Queries
Hassan Ashtiani, Shrinu Kushagra, Shai Ben-David
We propose a framework for Semi-Supervised Active Clustering framework (SSAC), where the learner is allowed to interact with a domain expert, asking whether two given instances belong to the same cluster or not. We study the query and computational complexity of clustering in this framework. We consider a setting where the expert conforms to a center-based clustering with a notion of margin. We show that there is a trade off between computational complexity and query complexity; We prove that for the case of k-means clustering (i.e., when the expert conforms to a solution of k-means), having access to relatively few such queries allows efficient solutions to otherwise NP hard problems.