Haslum, Patrik
The Universal PDDL Domain
Haslum, Patrik, Corrêa, Augusto B.
In AI planning, it is common to distinguish between planning domains and problem instances, where a "domain" is generally understood as a set of related problem instances. This distinction is important, for example, in generalised planning, which aims to find a single, general plan or policy that solves all instances of a given domain. In PDDL, domains and problem instances are clearly separated: the domain defines the types, predicate symbols, and action schemata, while the problem instance specifies the concrete set of (typed) objects, the initial state, and the goal condition. In this paper, we show that it is quite easy to define a PDDL domain such that any propositional planning problem instance, from any domain, becomes an instance of this (lifted) "universal" domain. We construct different formulations of the universal domain, and discuss their implications for the complexity of lifted domain-dependent or generalised planning.
A More General Theory of Diagnosis from First Principles
Grastien, Alban, Haslum, Patrik, Thiébaux, Sylvie
Model-based diagnosis has been an active research topic in different communities including artificial intelligence, formal methods, and control. This has led to a set of disparate approaches addressing different classes of systems and seeking different forms of diagnoses. In this paper, we resolve such disparities by generalising Reiter's theory to be agnostic to the types of systems and diagnoses considered. This more general theory of diagnosis from first principles defines the minimal diagnosis as the set of preferred diagnosis candidates in a search space of hypotheses. Computing the minimal diagnosis is achieved by exploring the space of diagnosis hypotheses, testing sets of hypotheses for consistency with the system's model and the observation, and generating conflicts that rule out successors and other portions of the search space. Under relatively mild assumptions, our algorithms correctly compute the set of preferred diagnosis candidates. The main difficulty here is that the search space is no longer a powerset as in Reiter's theory, and that, as consequence, many of the implicit properties (such as finiteness of the search space) no longer hold. The notion of conflict also needs to be generalised and we present such a more general notion. We present two implementations of these algorithms, using test solvers based on satisfiability and heuristic search, respectively, which we evaluate on instances from two real world discrete event problems. Despite the greater generality of our theory, these implementations surpass the special purpose algorithms designed for discrete event systems, and enable solving instances that were out of reach of existing diagnosis approaches.
Automated Action Model Acquisition from Narrative Texts
Li, Ruiqi, Cui, Leyang, Lin, Songtuan, Haslum, Patrik
Action models, which take the form of precondition/effect axioms, facilitate causal and motivational connections between actions for AI agents. Action model acquisition has been identified as a bottleneck in the application of planning technology, especially within narrative planning. Acquiring action models from narrative texts in an automated way is essential, but challenging because of the inherent complexities of such texts. We present NaRuto, a system that extracts structured events from narrative text and subsequently generates planning-language-style action models based on predictions of commonsense event relations, as well as textual contradictions and similarities, in an unsupervised manner. Experimental results in classical narrative planning domains show that NaRuto can generate action models of significantly better quality than existing fully automated methods, and even on par with those of semi-automated methods.
EDeR: A Dataset for Exploring Dependency Relations Between Events
Li, Ruiqi, Haslum, Patrik, Cui, Leyang
Relation extraction is a central task in natural language processing (NLP) and information retrieval (IR) research. We argue that an important type of relation not explored in NLP or IR research to date is that of an event being an argument - required or optional - of another event. We introduce the human-annotated Event Dependency Relation dataset (EDeR) which provides this dependency relation. The annotation is done on a sample of documents from the OntoNotes dataset, which has the added benefit that it integrates with existing, orthogonal, annotations of this dataset. We investigate baseline approaches for predicting the event dependency relation, the best of which achieves an accuracy of 82.61 for binary argument/non-argument classification. We show that recognizing this relation leads to more accurate event extraction (semantic role labelling) and can improve downstream tasks that depend on this, such as co-reference resolution. Furthermore, we demonstrate that predicting the three-way classification into the required argument, optional argument or non-argument is a more challenging task.
Subgoaling Techniques for Satisficing and Optimal Numeric Planning
Scala, Enrico, Haslum, Patrik, Thiébaux, Sylvie, Ramirez, Miquel
This paper studies novel subgoaling relaxations for automated planning with propositional and numeric state variables. Subgoaling relaxations address one source of complexity of the planning problem: the requirement to satisfy conditions simultaneously. The core idea is to relax this requirement by recursively decomposing conditions into atomic subgoals that are considered in isolation. Such relaxations are typically used for pruning, or as the basis for computing admissible or inadmissible heuristic estimates to guide optimal or satisificing heuristic search planners. In the last decade or so, the subgoaling principle has underpinned the design of an abundance of relaxation-based heuristics whose formulations have greatly extended the reach of classical planning. This paper extends subgoaling relaxations to support numeric state variables and numeric conditions. We provide both theoretical and practical results, with the aim of reaching a good trade-off between accuracy and computation costs within a heuristic state-space search planner. Our experimental results validate the theoretical assumptions, and indicate that subgoaling substantially improves on the state of the art in optimal and satisficing numeric planning via forward state-space search.
Dynamic Controllability of Controllable Conditional Temporal Problems with Uncertainty
Cui, Jing, Haslum, Patrik
Dynamic Controllability (DC) of a Simple Temporal Problem with Uncertainty (STPU) uses a dynamic decision strategy, rather than a fixed schedule, to tackle temporal uncertainty. We extend this concept to the Controllable Conditional Temporal Problem with Uncertainty (CCTPU), which extends the STPU by conditioning temporal constraints on the assignment of controllable discrete variables. We define dynamic controllability of a CCTPU as the existence of a strategy that decides on both the values of discrete choice variables and the scheduling of controllable time points dynamically. This contrasts with previous work, which made a static assignment of choice variables and dynamic decisions over time points only. We propose an algorithm to find such a fully dynamic strategy. The algorithm computes the "envelope" of outcomes of temporal uncertainty in which a particular assignment of discrete variables is feasible, and aggregates these over all choices. When an aggregated envelope covers all uncertain situations of the CCTPU, the problem is dynamically controllable. However, the algorithm is complete only under certain assumptions. Experiments on an existing set of CCTPU benchmarks show that there are cases in which making both discrete and temporal decisions dynamically it is feasible to satisfy the problem constraints while assigning the discrete variables statically it is not.
Extending Classical Planning with State Constraints: Heuristics and Search for Optimal Planning
Haslum, Patrik, Ivankovic, Franc, Ramirez, Miquel, Gordon, Dan, Thiebaux, Sylvie, Shivashankar, Vikas, Nau, Dana S.
We present a principled way of extending a classical AI planning formalism with systems of state constraints, which relate - sometimes determine - the values of variables in each state traversed by the plan. This extension occupies an attractive middle ground between expressivity and complexity. It enables modelling a new range of problems, as well as formulating more efficient models of classical planning problems. An example of the former is planning-based control of networked physical systems - power networks, for example - in which a local, discrete control action can have global effects on continuous quantities, such as altering flows across the entire network. At the same time, our extension remains decidable as long as the satisfiability of sets of state constraints is decidable, including in the presence of numeric state variables, and we demonstrate that effective techniques for cost-optimal planning known in the classical setting - in particular, relaxation-based admissible heuristics - can be adapted to the extended formalism. In this paper, we apply our approach to constraints in the form of linear or non-linear equations over numeric state variables, but the approach is independent of the type of state constraints, as long as there exists a procedure that decides their consistency. The planner and the constraint solver interact through a well-defined, narrow interface, in which the solver requires no specialisation to the planning context.
A TIL-Relaxed Heuristic for Planning with Time Windows
Allard, Tony (Cyber and Electronic Warfare Division Defence Science and Technology Group) | Gretton, Charles (Australian National University) | Haslum, Patrik (Australian National University, CSIRO Data61)
We consider planning problems with time windows, in which the availability of discrete resources is time constrained. We develop a novel heuristic that addresses specifically the difficulty of coordinating actions within time windows. The heuristic is based on solving a temporally relaxed problem and measuring the magnitude by which the relaxed solution violates the time window constraints. Applied in a state-space search planner, the heuristic reduces the number of dead-ends encountered during search, and improves planner coverage.
Resolving Over-Constrained Temporal Problems with Uncertainty through Conflict-Directed Relaxation
Yu, Peng, Williams, Brian, Fang, Cheng, Cui, Jing, Haslum, Patrik
Over-subscription, that is, being assigned too many things to do, is commonly encountered in temporal scheduling problems. As human beings, we often want to do more than we can actually do, and underestimate how long it takes to perform each task. Decision makers can benefit from aids that identify when these failure situations are likely, the root causes of these failures, and resolutions to these failures. In this paper, we present a decision assistant that helps users resolve over-subscribed temporal problems. The system works like an experienced advisor that can quickly identify the cause of failure underlying temporal problems and compute resolutions. The core of the decision assistant is the Best-first Conflict-Directed Relaxation (BCDR) algorithm, which can detect conflicting sets of constraints within temporal problems, and computes continuous relaxations for them that weaken constraints to the minimum extent, instead of removing them completely. BCDR is an extension to the Conflict-Directed A* algorithm, first developed in the model-based reasoning community to compute most likely system diagnoses or reconfigurations. It generalizes the discrete conflicts and relaxations, to hybrid conflicts and relaxations, which denote minimal inconsistencies and minimal relaxations to both discrete and continuous relaxable constraints. In addition, BCDR is capable of handling temporal uncertainty, expressed as either set-bounded or probabilistic durations, and can compute preferred trade-offs between the risk of violating a schedule requirement, versus the loss of utility by weakening those requirements. BCDR has been applied to several decision support applications in different domains, including deep-sea exploration, urban travel planning and transit system management. It has demonstrated its effectiveness in helping users resolve over-subscribed scheduling problems and evaluate the robustness of existing solutions. In our benchmark experiments, BCDR has also demonstrated its efficiency on solving large-scale scheduling problems in the aforementioned domains. Thanks to its conflict-driven approach for computing relaxations, BCDR achieves one to two orders of magnitude improvements on runtime performance when compared to state-of-the-art numerical solvers.
Numerical Integration and Dynamic Discretization in Heuristic Search Planning over Hybrid Domains
Ramirez, Miquel, Scala, Enrico, Haslum, Patrik, Thiebaux, Sylvie
In this paper we look into the problem of planning over hybrid domains, where change can be both discrete and instantaneous, or continuous over time. In addition, it is required that each state on the trajectory induced by the execution of plans complies with a given set of global constraints. We approach the computation of plans for such domains as the problem of searching over a deterministic state model. In this model, some of the successor states are obtained by solving numerically the so-called initial value problem over a set of ordinary differential equations (ODE) given by the current plan prefix. These equations hold over time intervals whose duration is determined dynamically, according to whether zero crossing events take place for a set of invariant conditions. The resulting planner, FS+, incorporates these features together with effective heuristic guidance. FS+ does not impose any of the syntactic restrictions on process effects often found on the existing literature on Hybrid Planning. A key concept of our approach is that a clear separation is struck between planning and simulation time steps. The former is the time allowed to observe the evolution of a given dynamical system before committing to a future course of action, whilst the later is part of the model of the environment. FS+ is shown to be a robust planner over a diverse set of hybrid domains, taken from the existing literature on hybrid planning and systems.