Hashemi, Javad
Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders
Mishra, Aditya, Samin, Ahnaf Mozib, Etemad, Ali, Hashemi, Javad
We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data. Our method successfully learns robust subject-specific latent representations using the split-latent space architecture tailored for subject identification. To enhance the model's adaptability to unseen subjects without extensive retraining, we introduce an attention-based adapter network for fine-tuning, which reduces the computational cost of adapting the model to new subjects. Our method significantly outperforms other deep learning approaches, achieving state-of-the-art results with a subject balanced accuracy of 89.81% on the ERP-Core dataset and 70.85% on the SleepEDFx-20 dataset. After subject adaptive fine-tuning using adapters and attention layers, GC-VASE further improves the subject balanced accuracy to 90.31% on ERP-Core. Additionally, we perform a detailed ablation study to highlight the impact of the key components of our method.
Dynamic Prototype Rehearsal for Continual Learning in ECG Arrhythmia Detection
Rahmani, Sana, Chatterjee, Reetam, Etemad, Ali, Hashemi, Javad
Continual Learning (CL) methods aim to learn from a sequence of tasks while avoiding the challenge of forgetting previous knowledge. We present DREAM-CL, a novel CL method for ECG arrhythmia detection that introduces dynamic prototype rehearsal memory. DREAM-CL selects representative prototypes by clustering data based on learning behavior during each training session. Within each cluster, we apply a smooth sorting operation that ranks samples by training difficulty, compressing extreme values and removing outliers. The more challenging samples are then chosen as prototypes for the rehearsal memory, ensuring effective knowledge retention across sessions. We evaluate our method on time-incremental, class-incremental, and lead-incremental scenarios using two widely used ECG arrhythmia datasets, Chapman and PTB-XL. The results demonstrate that DREAM-CL outperforms the state-of-the-art in CL for ECG arrhythmia detection. Detailed ablation and sensitivity studies are performed to validate the different design choices of our method.
In-Distribution and Out-of-Distribution Self-supervised ECG Representation Learning for Arrhythmia Detection
Soltanieh, Sahar, Hashemi, Javad, Etemad, Ali
This paper presents a systematic investigation into the effectiveness of Self-Supervised Learning (SSL) methods for Electrocardiogram (ECG) arrhythmia detection. We begin by conducting a novel distribution analysis on three popular ECG-based arrhythmia datasets: PTB-XL, Chapman, and Ribeiro. To the best of our knowledge, our study is the first to quantify these distributions in this area. We then perform a comprehensive set of experiments using different augmentations and parameters to evaluate the effectiveness of various SSL methods, namely SimCRL, BYOL, and SwAV, for ECG representation learning, where we observe the best performance achieved by SwAV. Furthermore, our analysis shows that SSL methods achieve highly competitive results to those achieved by supervised state-of-the-art methods. To further assess the performance of these methods on both In-Distribution (ID) and Out-of-Distribution (OOD) ECG data, we conduct cross-dataset training and testing experiments. Our comprehensive experiments show almost identical results when comparing ID and OOD schemes, indicating that SSL techniques can learn highly effective representations that generalize well across different OOD datasets. This finding can have major implications for ECG-based arrhythmia detection. Lastly, to further analyze our results, we perform detailed per-disease studies on the performance of the SSL methods on the three datasets.