Hasan, Anwarul
CardioTabNet: A Novel Hybrid Transformer Model for Heart Disease Prediction using Tabular Medical Data
Sumon, Md. Shaheenur Islam, Islam, Md. Sakib Bin, Rahman, Md. Sohanur, Hossain, Md. Sakib Abrar, Khandakar, Amith, Hasan, Anwarul, Murugappan, M, Chowdhury, Muhammad E. H.
The early detection and prediction of cardiovascular diseases are crucial for reducing the severe morbidity and mortality associated with these conditions worldwide. A multi-headed self-attention mechanism, widely used in natural language processing (NLP), is operated by Transformers to understand feature interactions in feature spaces. However, the relationships between various features within biological systems remain ambiguous in these spaces, highlighting the necessity of early detection and prediction of cardiovascular diseases to reduce the severe morbidity and mortality with these conditions worldwide. We handle this issue with CardioTabNet, which exploits the strength of tab transformer to extract feature space which carries strong understanding of clinical cardiovascular data and its feature ranking. As a result, performance of downstream classical models significantly showed outstanding result. Our study utilizes the open-source dataset for heart disease prediction with 1190 instances and 11 features. In total, 11 features are divided into numerical (age, resting blood pressure, cholesterol, maximum heart rate, old peak, weight, and fasting blood sugar) and categorical (resting ECG, exercise angina, and ST slope). Tab transformer was used to extract important features and ranked them using random forest (RF) feature ranking algorithm. Ten machine-learning models were used to predict heart disease using selected features. After extracting high-quality features, the top downstream model (a hyper-tuned ExtraTree classifier) achieved an average accuracy rate of 94.1% and an average Area Under Curve (AUC) of 95.0%. Furthermore, a nomogram analysis was conducted to evaluate the model's effectiveness in cardiovascular risk assessment. A benchmarking study was conducted using state-of-the-art models to evaluate our transformer-driven framework.
Ensemble Machine Learning Model for Inner Speech Recognition: A Subject-Specific Investigation
Tasin, Shahamat Mustavi, Chowdhury, Muhammad E. H., Pedersen, Shona, Chabbouh, Malek, Bushnaq, Diala, Aljindi, Raghad, Kabir, Saidul, Hasan, Anwarul
Inner speech recognition has gained enormous interest in recent years due to its applications in rehabilitation, developing assistive technology, and cognitive assessment. However, since language and speech productions are a complex process, for which identifying speech components has remained a challenging task. Different approaches were taken previously to reach this goal, but new approaches remain to be explored. Also, a subject-oriented analysis is necessary to understand the underlying brain dynamics during inner speech production, which can bring novel methods to neurological research. A publicly available dataset, Thinking Out Loud Dataset, has been used to develop a Machine Learning (ML)-based technique to classify inner speech using 128-channel surface EEG signals. The dataset is collected on a Spanish cohort of ten subjects while uttering four words (Arriba, Abajo, Derecha, and Izquierda) by each participant. Statistical methods were employed to detect and remove motion artifacts from the Electroencephalography (EEG) signals. A large number (191 per channel) of time-, frequency- and time-frequency-domain features were extracted. Eight feature selection algorithms are explored, and the best feature selection technique is selected for subsequent evaluations. The performance of six ML algorithms is evaluated, and an ensemble model is proposed. Deep Learning (DL) models are also explored, and the results are compared with the classical ML approach. The proposed ensemble model, by stacking the five best logistic regression models, generated an overall accuracy of 81.13% and an F1 score of 81.12% in the classification of four inner speech words using surface EEG signals. The proposed framework with the proposed ensemble of classical ML models shows promise in the classification of inner speech using surface EEG signals.
Machine-agnostic Automated Lumbar MRI Segmentation using a Cascaded Model Based on Generative Neurons
Basak, Promit, Sarmun, Rusab, Kabir, Saidul, Al-Hashimi, Israa, Bhuiyan, Enamul Hoque, Hasan, Anwarul, Khan, Muhammad Salman, Chowdhury, Muhammad E. H.
Automated lumbar spine segmentation is very crucial for modern diagnosis systems. In this study, we introduce a novel machine-agnostic approach for segmenting lumbar vertebrae and intervertebral discs from MRI images, employing a cascaded model that synergizes an ROI detection and a Self-organized Operational Neural Network (Self-ONN)-based encoder-decoder network for segmentation. Addressing the challenge of diverse MRI modalities, our methodology capitalizes on a unique dataset comprising images from 12 scanners and 34 subjects, enhanced through strategic preprocessing and data augmentation techniques. The YOLOv8 medium model excels in ROI extraction, achieving an excellent performance of 0.916 mAP score. Significantly, our Self-ONN-based model, combined with a DenseNet121 encoder, demonstrates excellent performance in lumbar vertebrae and IVD segmentation with a mean Intersection over Union (IoU) of 83.66%, a sensitivity of 91.44%, and Dice Similarity Coefficient (DSC) of 91.03%, as validated through rigorous 10-fold cross-validation. This study not only showcases an effective approach to MRI segmentation in spine-related disorders but also sets the stage for future advancements in automated diagnostic tools, emphasizing the need for further dataset expansion and model refinement for broader clinical applicability.
Improving Pediatric Pneumonia Diagnosis with Adult Chest X-ray Images Utilizing Contrastive Learning and Embedding Similarity
Zunaed, Mohammad, Hasan, Anwarul, Hasan, Taufiq
Despite the advancement of deep learning-based computer-aided diagnosis (CAD) methods for pneumonia from adult chest x-ray (CXR) images, the performance of CAD methods applied to pediatric images remains suboptimal, mainly due to the lack of large-scale annotated pediatric imaging datasets. Establishing a proper framework to leverage existing adult large-scale CXR datasets can thus enhance pediatric pneumonia detection performance. In this paper, we propose a three-branch parallel path learning-based framework that utilizes both adult and pediatric datasets to improve the performance of deep learning models on pediatric test datasets. The paths are trained with pediatric only, adult only, and both types of CXRs, respectively. Our proposed framework utilizes the multi-positive contrastive loss to cluster the classwise embeddings and the embedding similarity loss among these three parallel paths to make the classwise embeddings as close as possible to reduce the effect of domain shift. Experimental evaluations on open-access adult and pediatric CXR datasets show that the proposed method achieves a superior AUROC score of 0.8464 compared to 0.8348 obtained using the conventional approach of join training on both datasets. The proposed approach thus paves the way for generalized CAD models that are effective for both adult and pediatric age groups.
Deep learning in computed tomography pulmonary angiography imaging: a dual-pronged approach for pulmonary embolism detection
Bushra, Fabiha, Chowdhury, Muhammad E. H., Sarmun, Rusab, Kabir, Saidul, Said, Menatalla, Zoghoul, Sohaib Bassam, Mushtak, Adam, Al-Hashimi, Israa, Alqahtani, Abdulrahman, Hasan, Anwarul
The increasing reliance on Computed Tomography Pulmonary Angiography (CTPA) for Pulmonary Embolism (PE) diagnosis presents challenges and a pressing need for improved diagnostic solutions. The primary objective of this study is to leverage deep learning techniques to enhance the Computer Assisted Diagnosis (CAD) of PE. With this aim, we propose a classifier-guided detection approach that effectively leverages the classifier's probabilistic inference to direct the detection predictions, marking a novel contribution in the domain of automated PE diagnosis. Our classification system includes an Attention-Guided Convolutional Neural Network (AG-CNN) that uses local context by employing an attention mechanism. This approach emulates a human expert's attention by looking at both global appearances and local lesion regions before making a decision. The classifier demonstrates robust performance on the FUMPE dataset, achieving an AUROC of 0.927, sensitivity of 0.862, specificity of 0.879, and an F1-score of 0.805 with the Inception-v3 backbone architecture. Moreover, AG-CNN outperforms the baseline DenseNet-121 model, achieving an 8.1% AUROC gain. While previous research has mostly focused on finding PE in the main arteries, our use of cutting-edge object detection models and ensembling techniques greatly improves the accuracy of detecting small embolisms in the peripheral arteries. Finally, our proposed classifier-guided detection approach further refines the detection metrics, contributing new state-of-the-art to the community: mAP$_{50}$, sensitivity, and F1-score of 0.846, 0.901, and 0.779, respectively, outperforming the former benchmark with a significant 3.7% improvement in mAP$_{50}$. Our research aims to elevate PE patient care by integrating AI solutions into clinical workflows, highlighting the potential of human-AI collaboration in medical diagnostics.
ThoraX-PriorNet: A Novel Attention-Based Architecture Using Anatomical Prior Probability Maps for Thoracic Disease Classification
Hossain, Md. Iqbal, Zunaed, Mohammad, Ahmed, Md. Kawsar, Hossain, S. M. Jawwad, Hasan, Anwarul, Hasan, Taufiq
Objective: Computer-aided disease diagnosis and prognosis based on medical images is a rapidly emerging field. Many Convolutional Neural Network (CNN) architectures have been developed by researchers for disease classification and localization from chest X-ray images. It is known that different thoracic disease lesions are more likely to occur in specific anatomical regions compared to others. This article aims to incorporate this disease and region-dependent prior probability distribution within a deep learning framework. Methods: We present the ThoraX-PriorNet, a novel attention-based CNN model for thoracic disease classification. We first estimate a disease-dependent spatial probability, i.e., an anatomical prior, that indicates the probability of occurrence of a disease in a specific region in a chest X-ray image. Next, we develop a novel attention-based classification model that combines information from the estimated anatomical prior and automatically extracted chest region of interest (ROI) masks to provide attention to the feature maps generated from a deep convolution network. Unlike previous works that utilize various self-attention mechanisms, the proposed method leverages the extracted chest ROI masks along with the probabilistic anatomical prior information, which selects the region of interest for different diseases to provide attention. Results: The proposed method shows superior performance in disease classification on the NIH ChestX-ray14 dataset compared to existing state-of-the-art methods while reaching an area under the ROC curve (%AUC) of 84.67. Regarding disease localization, the anatomy prior attention method shows competitive performance compared to state-of-the-art methods, achieving an accuracy of 0.80, 0.63, 0.49, 0.33, 0.28, 0.21, and 0.04 with an Intersection over Union (IoU) threshold of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7, respectively.