Goto

Collaborating Authors

 Harsuko, Randy


A generative foundation model for an all-in-one seismic processing framework

arXiv.org Artificial Intelligence

Seismic data often face challenges in their utilization due to noise contamination, incomplete acquisition, and limited low-frequency information, which hinder accurate subsurface imaging and interpretation. Traditional processing methods rely heavily on task-specific designs to address these challenges and fail to account for the variability of data. To address these limitations, we present a generative seismic foundation model (GSFM), a unified framework based on generative diffusion models (GDMs), designed to tackle multi-task seismic processing challenges, including denoising, backscattered noise attenuation, interpolation, and low-frequency extrapolation. GSFM leverages a pre-training stage on synthetic data to capture the features of clean, complete, and broadband seismic data distributions and applies an iterative fine-tuning strategy to adapt the model to field data. By adopting a target-oriented diffusion process prediction, GSFM improves computational efficiency without compromising accuracy. Synthetic data tests demonstrate GSFM surpasses benchmarks with equivalent architectures in all tasks and achieves performance comparable to traditional pre-training strategies, even after their fine-tuning. Also, field data tests suggest that our iterative fine-tuning approach addresses the generalization limitations of conventional pre-training and fine-tuning paradigms, delivering significantly enhanced performance across diverse tasks. Furthermore, GSFM's inherent probabilistic nature enables effective uncertainty quantification, offering valuable insights into the reliability of processing results.


Optimizing a Transformer-based network for a deep learning seismic processing workflow

arXiv.org Artificial Intelligence

StorSeismic is a recently introduced model based on the Transformer to adapt to various seismic processing tasks through its pretraining and fine-tuning training strategy. In the original implementation, StorSeismic utilized a sinusoidal positional encoding and a conventional self-attention mechanism, both borrowed from the natural language processing (NLP) applications. For seismic processing they admitted good results, but also hinted to limitations in efficiency and expressiveness. We propose modifications to these two key components, by utilizing relative positional encoding and low-rank attention matrices as replacements to the vanilla ones. The proposed changes are tested on processing tasks applied to a realistic Marmousi and offshore field data as a sequential strategy, starting from denoising, direct arrival removal, multiple attenuation, and finally root-mean-squared velocity ($V_{RMS}$) prediction for normal moveout (NMO) correction. We observe faster pretraining and competitive results on the fine-tuning tasks and, additionally, fewer parameters to train compared to the vanilla model.


StorSeismic: A new paradigm in deep learning for seismic processing

arXiv.org Artificial Intelligence

Machine learned tasks on seismic data are often trained sequentially and separately, even though they utilize the same features (i.e. geometrical) of the data. We present StorSeismic, as a framework for seismic data processing, which consists of neural network pre-training and fine-tuning procedures. We, specifically, utilize a neural network as a preprocessing model to store seismic data features of a particular dataset for any downstream tasks. After pre-training, the resulting model can be utilized later, through a fine-tuning procedure, to perform tasks using limited additional training. Used often in Natural Language Processing (NLP) and lately in vision tasks, BERT (Bidirectional Encoder Representations from Transformer), a form of a Transformer model, provides an optimal platform for this framework. The attention mechanism of BERT, applied here on a sequence of traces within the shot gather, is able to capture and store key geometrical features of the seismic data. We pre-train StorSeismic on field data, along with synthetically generated ones, in the self-supervised step. Then, we use the labeled synthetic data to fine-tune the pre-trained network in a supervised fashion to perform various seismic processing tasks, like denoising, velocity estimation, first arrival picking, and NMO. Finally, the fine-tuned model is used to obtain satisfactory inference results on the field data.