Harris-Warrick, Ronald M.
Mechanisms for Neuromodulation of Biological Neural Networks
Harris-Warrick, Ronald M.
The pyloric Central Pattern Generator of the crustacean stomatogastric ganglion is a well-defined biological neural network. This 14-neuron network is modulated by many inputs. These inputs reconfigure the network to produce multiple output patterns by three simple mechanisms: 1) detennining which cells are active; 2) modulating the synaptic efficacy; 3) changing the intrinsic response properties of individual neurons. The importance of modifiable intrinsic response properties of neurons for network function and modulation is discussed.
Mechanisms for Neuromodulation of Biological Neural Networks
Harris-Warrick, Ronald M.
The pyloric Central Pattern Generator of the crustacean stomatogastric ganglion is a well-defined biological neural network. This 14-neuron network is modulated by many inputs. These inputs reconfigure the network to produce multiple output patterns by three simple mechanisms: 1) detennining which cells are active; 2) modulating the synaptic efficacy; 3) changing the intrinsic response properties of individual neurons. The importance of modifiable intrinsic response properties of neurons for network function and modulation is discussed.