Harris, John G.
A Neuromorphic Monaural Sound Localizer
Harris, John G., Pu, Chiang-Jung, Príncipe, José Carlos
We describe the first single microphone sound localization system and its inspiration from theories of human monaural sound localization. Reflectionsand diffractions caused by the external ear (pinna) allow humans to estimate sound source elevations using only one ear. Our single microphone localization model relies on a specially shaped reflecting structure that serves the role of the pinna. Specially designedanalog VLSI circuitry uses echo-time processing to localize the sound. A CMOS integrated circuit has been designed, fabricated, and successfully demonstrated on actual sounds. 1 Introduction The principal cues for human sound localization arise from time and intensity differences betweenthe signals received at the two ears. For low-frequency components of sounds (below 1500Hz for humans), the phase-derived interaural time difference (lTD) can be used to localize the sound source. For these frequencies, the sound wavelength is at least several times larger than the head and the amount of shadowing (whichdepends on the wavelength of the sound compared with the dimensions of the head) is negligible.
A Neuromorphic Monaural Sound Localizer
Harris, John G., Pu, Chiang-Jung, Príncipe, José Carlos
We describe the first single microphone sound localization system and its inspiration from theories of human monaural sound localization. Reflections and diffractions caused by the external ear (pinna) allow humans to estimate sound source elevations using only one ear. Our single microphone localization model relies on a specially shaped reflecting structure that serves the role of the pinna. Specially designed analog VLSI circuitry uses echo-time processing to localize the sound. A CMOS integrated circuit has been designed, fabricated, and successfully demonstrated on actual sounds. 1 Introduction The principal cues for human sound localization arise from time and intensity differences between the signals received at the two ears. For low-frequency components of sounds (below 1500Hz for humans), the phase-derived interaural time difference (lTD) can be used to localize the sound source. For these frequencies, the sound wavelength is at least several times larger than the head and the amount of shadowing (which depends on the wavelength of the sound compared with the dimensions of the head) is negligible.
Object-Based Analog VLSI Vision Circuits
Koch, Christof, Mathur, Binnal, Liu, Shih-Chii, Harris, John G., Luo, Jin, Sivilotti, Massimo
We describe two successfully working, analog VLSI vision circuits that move beyond pixel-based early vision algorithms. One circuit, implementing the dynamic wires model, provides for dedicated lines of communication among groups of pixels that share a common property. The chip uses the dynamic wires model to compute the arclength of visual contours. Another circuit labels all points inside a given contour with one voltage and all other with another voltage. Its behavior is very robust, since small breaks in contours are automatically sealed, providing for Figure-Ground segregation in a noisy environment. Both chips are implemented using networks of resistors and switches and represent a step towards object level processing since a single voltage value encodes the property of an ensemble of pixels.
Object-Based Analog VLSI Vision Circuits
Koch, Christof, Mathur, Binnal, Liu, Shih-Chii, Harris, John G., Luo, Jin, Sivilotti, Massimo
We describe two successfully working, analog VLSI vision circuits that move beyond pixel-based early vision algorithms. One circuit, implementing the dynamic wires model, provides for dedicated lines of communication among groups of pixels that share a common property. The chip uses the dynamic wires model to compute the arclength of visual contours. Another circuit labels all points inside a given contour with one voltage and all other with another voltage. Itsbehavior is very robust, since small breaks in contours are automatically sealed, providing for Figure-Ground segregation in a noisy environment. Both chips are implemented using networks of resistors and switches and represent a step towards object level processing since a single voltage value encodes the property of an ensemble of pixels.
Object-Based Analog VLSI Vision Circuits
Koch, Christof, Mathur, Binnal, Liu, Shih-Chii, Harris, John G., Luo, Jin, Sivilotti, Massimo
We describe two successfully working, analog VLSI vision circuits that move beyond pixel-based early vision algorithms. One circuit, implementing the dynamic wires model, provides for dedicated lines of communication among groups of pixels that share a common property. The chip uses the dynamic wires model to compute the arclength of visual contours. Another circuit labels all points inside a given contour with one voltage and all other with another voltage. Its behavior is very robust, since small breaks in contours are automatically sealed, providing for Figure-Ground segregation in a noisy environment. Both chips are implemented using networks of resistors and switches and represent a step towards object level processing since a single voltage value encodes the property of an ensemble of pixels.
Segmentation Circuits Using Constrained Optimization
Harris, John G.
Analog hardware has obvious advantages in terms of its size, speed, cost, and power consumption. Analog chip designers, however, should not feel constrained to mapping existing digital algorithms to silicon. Many times, new algorithms must be adapted or invented to ensure efficient implementation in analog hardware. Novel analog algorithms embedded in the hardware must be simple and obey the natural constraints of physics. Much algorithm intuition can be gained from experimenting with these continuous-time nonlinear systems. For example, the algorithm described in this paper arose from experimentation with existing analog segmentation hardware. Surprisingly, many of these "analog" algorithms may prove useful even if a computer vision researcher is limited to simulating the analog hardware on a digital computer [7].
Segmentation Circuits Using Constrained Optimization
Harris, John G.
Analog hardware has obvious advantages in terms of its size, speed, cost, and power consumption. Analog chip designers, however, should not feel constrained to mapping existingdigital algorithms to silicon. Many times, new algorithms must be adapted or invented to ensure efficient implementation in analog hardware. Novel analog algorithms embedded in the hardware must be simple and obey the natural constraints of physics. Much algorithm intuition can be gained from experimenting with these continuous-time nonlinear systems. For example, the algorithm described in this paper arose from experimentation with existing analog segmentation hardware. Surprisingly,many of these "analog" algorithms may prove useful even if a computer vision researcher is limited to simulating the analog hardware on a digital computer [7] .
Real-Time Computer Vision and Robotics Using Analog VLSI Circuits
Koch, Christof, Bair, Wyeth, Harris, John G., Horiuchi, Timothy K., Hsu, Andrew, Luo, Jin
The long-term goal of our laboratory is the development of analog resistive network-based VLSI implementations of early and intermediate visionalgorithms. We demonstrate an experimental circuit for smoothing and segmenting noisy and sparse depth data using the resistive fuse and a 1-D edge-detection circuit for computing zero-crossingsusing two resistive grids with different spaceconstants. Todemonstrate the robustness of our algorithms and of the fabricated analog CMOS VLSI chips, we are mounting these circuits onto small mobile vehicles operating in a real-time, laboratory environment.
Real-Time Computer Vision and Robotics Using Analog VLSI Circuits
Koch, Christof, Bair, Wyeth, Harris, John G., Horiuchi, Timothy K., Hsu, Andrew, Luo, Jin
The long-term goal of our laboratory is the development of analog resistive network-based VLSI implementations of early and intermediate vision algorithms. We demonstrate an experimental circuit for smoothing and segmenting noisy and sparse depth data using the resistive fuse and a 1-D edge-detection circuit for computing zero-crossings using two resistive grids with different spaceconstants. To demonstrate the robustness of our algorithms and of the fabricated analog CMOS VLSI chips, we are mounting these circuits onto small mobile vehicles operating in a real-time, laboratory environment.
An Analog VLSI Chip for Thin-Plate Surface Interpolation
Harris, John G.