Goto

Collaborating Authors

 Harel, David


Accelerating LLM Inference with Lossless Speculative Decoding Algorithms for Heterogeneous Vocabularies

arXiv.org Artificial Intelligence

Accelerating the inference of large language models (LLMs) is a critical challenge in generative AI. Speculative decoding (SD) methods offer substantial efficiency gains by generating multiple tokens using a single target forward pass. However, existing SD approaches require the drafter and target models to share the same vocabulary, thus limiting the pool of possible drafters, often necessitating the training of a drafter from scratch. We present three new SD methods that remove this shared-vocabulary constraint. All three methods preserve the target distribution (i.e., they are lossless) and work with off-the-shelf models without requiring additional training or modifications. Empirically, on summarization, programming, and long-context tasks, our algorithms achieve significant speedups over standard autoregressive decoding. By enabling any off-the-shelf model to serve as drafter and requiring no retraining, this work substantially broadens the applicability of the SD framework in practice.


Data and System Perspectives of Sustainable Artificial Intelligence

arXiv.org Artificial Intelligence

Sustainable AI is a subfield of AI for concerning developing and using AI systems in ways of aiming to reduce environmental impact and achieve sustainability. Sustainable AI is increasingly important given that training of and inference with AI models such as large langrage models are consuming a large amount of computing power. In this article, we discuss current issues, opportunities and example solutions for addressing these issues, and future challenges to tackle, from the data and system perspectives, related to data acquisition, data processing, and AI model training and inference.


Distributed Speculative Inference of Large Language Models

arXiv.org Artificial Intelligence

Accelerating the inference of large language models (LLMs) is an important challenge in artificial intelligence. This paper introduces distributed speculative inference (DSI), a novel distributed inference algorithm that is provably faster than speculative inference (SI) [Leviathan et al., 2023, Chen et al., 2023, Miao et al., 2023] and traditional autoregressive inference (non-SI). Like other SI algorithms, DSI works on frozen LLMs, requiring no training or architectural modifications, and it preserves the target distribution. Prior studies on SI have demonstrated empirical speedups (compared to non-SI) but require a fast and accurate drafter LLM. In practice, off-the-shelf LLMs often do not have matching drafters that are sufficiently fast and accurate. We show a gap: SI gets slower than non-SI when using slower or less accurate drafters. We close this gap by proving that DSI is faster than both SI and non-SI--given any drafters. By orchestrating multiple instances of the target and drafters, DSI is not only faster than SI but also supports LLMs that cannot be accelerated with SI. Our simulations show speedups of off-the-shelf LLMs in realistic settings: DSI is 1.29-1.92x


Non-verbal information in spontaneous speech -- towards a new framework of analysis

arXiv.org Artificial Intelligence

Non-verbal signals in speech are encoded by prosody and carry information that ranges from conversation action to attitude and emotion. Despite its importance, the principles that govern prosodic structure are not yet adequately understood. This paper offers an analytical schema and a technological proof-of-concept for the categorization of prosodic signals and their association with meaning. The schema interprets surface-representations of multi-layered prosodic events. As a first step towards implementation, we present a classification process that disentangles prosodic phenomena of three orders. It relies on fine-tuning a pre-trained speech recognition model, enabling the simultaneous multi-class/multi-label detection. It generalizes over a large variety of spontaneous data, performing on a par with, or superior to, human annotation. In addition to a standardized formalization of prosody, disentangling prosodic patterns can direct a theory of communication and speech organization. A welcome by-product is an interpretation of prosody that will enhance speech- and language-related technologies.


The Human-or-Machine Matter: Turing-Inspired Reflections on an Everyday Issue

arXiv.org Artificial Intelligence

In his seminal paper ``Computing Machinery and Intelligence'', Alan Turing introduced the ``imitation game'' as part of exploring the concept of machine intelligence. The Turing Test has since been the subject of much analysis, debate, refinement and extension. Here we sidestep the question of whether a particular machine can be labeled intelligent, or can be said to match human capabilities in a given context. Instead, we first draw attention to the seemingly simpler question a person may ask themselves in an everyday interaction: ``Am I interacting with a human or with a machine?''. We then shift the focus from seeking a method for eliciting the answer, and, rather, reflect upon the importance and significance of this Human-or-Machine question and the use one may make of a reliable answer thereto. Whereas Turing's original test is widely considered to be more of a thought experiment, the Human-or-Machine matter as discussed here has obvious practical relevance. While it is still unclear if and when machines will be able to mimic human behavior with high fidelity in everyday contexts, we argue that near-term exploration of the issues raised here can contribute to refinement of methods for developing computerized systems, and may also lead to new insights into fundamental characteristics of human behavior.


Verifying Learning-Based Robotic Navigation Systems

arXiv.org Artificial Intelligence

Deep reinforcement learning (DRL) has become a dominant deep-learning paradigm for tasks where complex policies are learned within reactive systems. Unfortunately, these policies are known to be susceptible to bugs. Despite significant progress in DNN verification, there has been little work demonstrating the use of modern verification tools on real-world, DRL-controlled systems. In this case study, we attempt to begin bridging this gap, and focus on the important task of mapless robotic navigation -- a classic robotics problem, in which a robot, usually controlled by a DRL agent, needs to efficiently and safely navigate through an unknown arena towards a target. We demonstrate how modern verification engines can be used for effective model selection, i.e., selecting the best available policy for the robot in question from a pool of candidate policies. Specifically, we use verification to detect and rule out policies that may demonstrate suboptimal behavior, such as collisions and infinite loops. We also apply verification to identify models with overly conservative behavior, thus allowing users to choose superior policies, which might be better at finding shorter paths to a target. To validate our work, we conducted extensive experiments on an actual robot, and confirmed that the suboptimal policies detected by our method were indeed flawed. We also demonstrate the superiority of our verification-driven approach over state-of-the-art, gradient attacks. Our work is the first to establish the usefulness of DNN verification in identifying and filtering out suboptimal DRL policies in real-world robots, and we believe that the methods presented here are applicable to a wide range of systems that incorporate deep-learning-based agents.