Goto

Collaborating Authors

 Hare, Jonathon


Beyond The Rainbow: High Performance Deep Reinforcement Learning On A Desktop PC

arXiv.org Artificial Intelligence

Rainbow Deep Q-Network (DQN) demonstrated combining multiple independent enhancements could significantly boost a reinforcement learning (RL) agent's performance. In this paper, we present "Beyond The Rainbow" (BTR), a novel algorithm that integrates six improvements from across the RL literature to Rainbow DQN, establishing a new state-of-the-art for RL using a desktop PC, with a human-normalized interquartile mean (IQM) of 7.4 on atari-60. Beyond Atari, we demonstrate BTR's capability to handle complex 3D games, successfully training agents to play Super Mario Galaxy, Mario Kart, and Mortal Kombat with minimal algorithmic changes. Designing BTR with computational efficiency in mind, agents can be trained using a desktop PC on 200 million Atari frames within 12 hours. Additionally, we conduct detailed ablation studies of each component, analzying the performance and impact using numerous measures.


Rethinking Deep Thinking: Stable Learning of Algorithms using Lipschitz Constraints

arXiv.org Artificial Intelligence

Iterative algorithms solve problems by taking steps until a solution is reached. Models in the form of Deep Thinking (DT) networks have been demonstrated to learn iterative algorithms in a way that can scale to different sized problems at inference time using recurrent computation and convolutions. However, they are often unstable during training, and have no guarantees of convergence/termination at the solution. This paper addresses the problem of instability by analyzing the growth in intermediate representations, allowing us to build models (referred to as Deep Thinking with Lipschitz Constraints (DT-L)) with many fewer parameters and providing more reliable solutions. Additionally our DT-L formulation provides guarantees of convergence of the learned iterative procedure to a unique solution at inference time. We demonstrate DT-L is capable of robustly learning algorithms which extrapolate to harder problems than in the training set. We benchmark on the traveling salesperson problem to evaluate the capabilities of the modified system in an NP-hard problem where DT fails to learn.


Improving the Robustness of Neural Multiplication Units with Reversible Stochasticity

arXiv.org Artificial Intelligence

Multilayer Perceptrons struggle to learn certain simple arithmetic tasks. Specialist neural modules for arithmetic can outperform classical architectures with gains in extrapolation, interpretability and convergence speeds, but are highly sensitive to the training range. In this paper, we show that Neural Multiplication Units (NMUs) are unable to reliably learn tasks as simple as multiplying two inputs when given different training ranges. Causes of failure are linked to inductive and input biases which encourage convergence to solutions in undesirable optima. A solution, the stochastic NMU (sNMU), is proposed to apply reversible stochasticity, encouraging avoidance of such optima whilst converging to the true solution. Empirically, we show that stochasticity provides improved robustness with the potential to improve learned representations of upstream networks for numerical and image tasks.


Shared Visual Representations of Drawing for Communication: How do different biases affect human interpretability and intent?

arXiv.org Artificial Intelligence

We present an investigation into how representational losses can affect the drawings produced by artificial agents playing a communication game. Building upon recent advances, we show that a combination of powerful pretrained encoder networks, with appropriate inductive biases, can lead to agents that draw recognisable sketches, whilst still communicating well. Further, we start to develop an approach to help automatically analyse the semantic content being conveyed by a sketch and demonstrate that current approaches to inducing perceptual biases lead to a notion of objectness being a key feature despite the agent training being self-supervised.


Learning Division with Neural Arithmetic Logic Modules

arXiv.org Machine Learning

To achieve systematic generalisation, it first makes sense to master simple tasks such as arithmetic. Of the four fundamental arithmetic operations (+,-,$\times$,$\div$), division is considered the most difficult for both humans and computers. In this paper we show that robustly learning division in a systematic manner remains a challenge even at the simplest level of dividing two numbers. We propose two novel approaches for division which we call the Neural Reciprocal Unit (NRU) and the Neural Multiplicative Reciprocal Unit (NMRU), and present improvements for an existing division module, the Real Neural Power Unit (Real NPU). Experiments in learning division with input redundancy on 225 different training sets, find that our proposed modifications to the Real NPU obtains an average success of 85.3$\%$ improving over the original by 15.1$\%$. In light of the suggestion above, our NMRU approach can further improve the success to 91.6$\%$.


Learning to Draw: Emergent Communication through Sketching

arXiv.org Artificial Intelligence

Evidence that visual communication preceded written language and provided a basis for it goes back to prehistory, in forms such as cave and rock paintings depicting traces of our distant ancestors. Emergent communication research has sought to explore how agents can learn to communicate in order to collaboratively solve tasks. Existing research has focused on language, with a learned communication channel transmitting sequences of discrete tokens between the agents. In this work, we explore a visual communication channel between agents that are allowed to draw with simple strokes. Our agents are parameterised by deep neural networks, and the drawing procedure is differentiable, allowing for end-to-end training. In the framework of a referential communication game, we demonstrate that agents can not only successfully learn to communicate by drawing, but with appropriate inductive biases, can do so in a fashion that humans can interpret. We hope to encourage future research to consider visual communication as a more flexible and directly interpretable alternative of training collaborative agents.


Point at the Triple: Generation of Text Summaries from Knowledge Base Triples

Journal of Artificial Intelligence Research

We investigate the problem of generating natural language summaries from knowledge base triples. Our approach is based on a pointer-generator network, which, in addition to generating regular words from a fixed target vocabulary, is able to verbalise triples in several ways. We undertake an automatic and a human evaluation on single and open-domain summaries generation tasks. Both show that our approach significantly outperforms other data-driven baselines.


Linear Disentangled Representations and Unsupervised Action Estimation

arXiv.org Machine Learning

Disentangled representation learning has seen a surge in interest over recent times, generally focusing on new models to optimise one of many disparate disentanglement metrics. It was only with Symmetry Based Disentangled Representation Learning that a robust mathematical framework was introduced to define precisely what is meant by a "linear disentangled representation". This framework determines that such representations would depend on a particular decomposition of the symmetry group acting on the data, showing that actions would manifest through irreducible group representations acting on independent representational subspaces. ForwardVAE subsequently proposed the first model to induce and demonstrate a linear disentangled representation in a VAE model. In this work we empirically show that linear disentangled representations are not present in standard VAE models and that they instead require altering the loss landscape to induce them. We proceed to show that such representations are a desirable property with regard to classical disentanglement metrics. Finally we propose a method to induce irreducible representations which forgoes the need for labelled action sequences, as was required by prior work. We explore a number of properties of this method, including the ability to learn from action sequences without knowledge of intermediate states.


Spatial and Colour Opponency in Anatomically Constrained Deep Networks

arXiv.org Machine Learning

Colour vision has long fascinated scientists, who have sought to understand both the physiology of the mechanics of colour vision and the psychophysics of colour perception. We consider representations of colour in anatomically constrained convolutional deep neural networks. Following ideas from neuroscience, we classify cells in early layers into groups relating to their spectral and spatial functionality. We show the emergence of single and double opponent cells in our networks and characterise how the distribution of these cells changes under the constraint of a retinal bottleneck. Our experiments not only open up a new understanding of how deep networks process spatial and colour information, but also provide new tools to help understand the black box of deep learning. The code for all experiments is avaialable at \url{https://github.com/ecs-vlc/opponency}.


Deep Set Prediction Networks

arXiv.org Machine Learning

We study the problem of predicting a set from a feature vector with a deep neural network. Existing approaches ignore the set structure of the problem and suffer from discontinuity issues as a result. We propose a general model for predicting sets that properly respects the structure of sets and avoids this problem. With a single feature vector as input, we show that our model is able to auto-encode point sets, predict bounding boxes of the set of objects in an image, and predict the attributes of these objects in an image.