Hara, Satoshi
Rule Mining for Correcting Classification Models
Suzuki, Hirofumi, Iwashita, Hiroaki, Takagi, Takuya, Fujishige, Yuta, Hara, Satoshi
Machine learning models need to be continually updated or corrected to ensure that the prediction accuracy remains consistently high. In this study, we consider scenarios where developers should be careful to change the prediction results by the model correction, such as when the model is part of a complex system or software. In such scenarios, the developers want to control the specification of the corrections. To achieve this, the developers need to understand which subpopulations of the inputs get inaccurate predictions by the model. Therefore, we propose correction rule mining to acquire a comprehensive list of rules that describe inaccurate subpopulations and how to correct them. We also develop an efficient correction rule mining algorithm that is a combination of frequent itemset mining and a unique pruning technique for correction rules. We observed that the proposed algorithm found various rules which help to collect data insufficiently learned, directly correct model outputs, and analyze concept drift.
Decentralized Hyper-Gradient Computation over Time-Varying Directed Networks
Terashita, Naoyuki, Hara, Satoshi
This paper addresses the communication issues when estimating hyper-gradients in decentralized federated learning (FL). Hyper-gradients in decentralized FL quantifies how the performance of globally shared optimal model is influenced by the perturbations in clients' hyper-parameters. In prior work, clients trace this influence through the communication of Hessian matrices over a static undirected network, resulting in (i) excessive communication costs and (ii) inability to make use of more efficient and robust networks, namely, time-varying directed networks. To solve these issues, we introduce an alternative optimality condition for FL using an averaging operation on model parameters and gradients. We then employ Push-Sum as the averaging operation, which is a consensus optimization technique for time-varying directed networks. As a result, the hyper-gradient estimator derived from our optimality condition enjoys two desirable properties; (i) it only requires Push-Sum communication of vectors and (ii) it can operate over time-varying directed networks. We confirm the convergence of our estimator to the true hyper-gradient both theoretically and empirically, and we further demonstrate that it enables two novel applications: decentralized influence estimation and personalization over time-varying networks.
Fool SHAP with Stealthily Biased Sampling
Laberge, Gabriel, Aïvodji, Ulrich, Hara, Satoshi, Marchand., Mario, Khomh, Foutse
SHAP explanations aim at identifying which features contribute the most to the difference in model prediction at a specific input versus a background distribution. Recent studies have shown that they can be manipulated by malicious adversaries to produce arbitrary desired explanations. However, existing attacks focus solely on altering the black-box model itself. In this paper, we propose a complementary family of attacks that leave the model intact and manipulate SHAP explanations using stealthily biased sampling of the data points used to approximate expectations w.r.t the background distribution. In the context of fairness audit, we show that our attack can reduce the importance of a sensitive feature when explaining the difference in outcomes between groups while remaining undetected. More precisely, experiments performed on real-world datasets showed that our attack could yield up to a 90\% relative decrease in amplitude of the sensitive feature attribution. These results highlight the manipulability of SHAP explanations and encourage auditors to treat them with skepticism.
Evaluation Criteria for Instance-based Explanation
Hanawa, Kazuaki, Yokoi, Sho, Hara, Satoshi, Inui, Kentaro
Explaining predictions made by complex machine learning models helps users understand and accept the predicted outputs with confidence. Instance-based explanation provides such help by identifying relevant instances as evidence to support a model's prediction result. To find relevant instances, several relevance metrics have been proposed. In this study, we ask the following research question: "Do the metrics actually work in practice?" To address this question, we propose two sanity check criteria that valid metrics should pass, and two additional criteria to evaluate the practical utility of the metrics. All criteria are designed in terms of whether the metric can pick up instances of desirable properties that the users expect in practice. Through experiments, we obtained two insights. First, some popular relevance metrics do not pass sanity check criteria. Second, some metrics based on cosine similarity perform better than other metrics, which would be recommended choices in practice. We also analyze why some metrics are successful and why some are not. We expect our insights to help further researches such as developing better explanation methods or designing new evaluation criteria.
Data Cleansing for Models Trained with SGD
Hara, Satoshi, Nitanda, Atsushi, Maehara, Takanori
Data cleansing is a typical approach used to improve the accuracy of machine learning models, which, however, requires extensive domain knowledge to identify the influential instances that affect the models. In this paper, we propose an algorithm that can suggest influential instances without using any domain knowledge. With the proposed method, users only need to inspect the instances suggested by the algorithm, implying that users do not need extensive knowledge for this procedure, which enables even non-experts to conduct data cleansing and improve the model. The existing methods require the loss function to be convex and an optimal model to be obtained, which is not always the case in modern machine learning. To overcome these limitations, we propose a novel approach specifically designed for the models trained with stochastic gradient descent (SGD). The proposed method infers the influential instances by retracing the steps of the SGD while incorporating intermediate models computed in each step. Through experiments, we demonstrate that the proposed method can accurately infer the influential instances. Moreover, we used MNIST and CIFAR10 to show that the models can be effectively improved by removing the influential instances suggested by the proposed method.
Enumeration of Distinct Support Vectors for Interactive Decision Making
Kanamori, Kentaro, Hara, Satoshi, Ishihata, Masakazu, Arimura, Hiroki
In conventional prediction tasks, a machine learning algorithm outputs a single best model that globally optimizes its objective function, which typically is accuracy. Therefore, users cannot access the other models explicitly. In contrast to this, multiple model enumeration attracts increasing interests in non-standard machine learning applications where other criteria, e.g., interpretability or fairness, than accuracy are main concern and a user may want to access more than one non-optimal, but suitable models. In this paper, we propose a K-best model enumeration algorithm for Support Vector Machines (SVM) that given a dataset S and an integer K>0, enumerates the K-best models on S with distinct support vectors in the descending order of the objective function values in the dual SVM problem. Based on analysis of the lattice structure of support vectors, our algorithm efficiently finds the next best model with small latency. This is useful in supporting users's interactive examination of their requirements on enumerated models. By experiments on real datasets, we evaluated the efficiency and usefulness of our algorithm.
Fairwashing: the risk of rationalization
Aïvodji, Ulrich, Arai, Hiromi, Fortineau, Olivier, Gambs, Sébastien, Hara, Satoshi, Tapp, Alain
Black-box explanation is the problem of explaining how a machine learning model -- whose internal logic is hidden to the auditor and generally complex -- produces its outcomes. Current approaches for solving this problem include model explanation, outcome explanation as well as model inspection. While these techniques can be beneficial by providing interpretability, they can be used in a negative manner to perform fairwashing, which we define as promoting the perception that a machine learning model respects some ethical values while it might not be the case. In particular, we demonstrate that it is possible to systematically rationalize decisions taken by an unfair black-box model using the model explanation as well as the outcome explanation approaches with a given fairness metric. Our solution, LaundryML, is based on a regularized rule list enumeration algorithm whose objective is to search for fair rule lists approximating an unfair black-box model. We empirically evaluate our rationalization technique on black-box models trained on real-world datasets and show that one can obtain rule lists with high fidelity to the black-box model while being considerably less unfair at the same time.
Pretending Fair Decisions via Stealthily Biased Sampling
Fukuchi, Kazuto, Hara, Satoshi, Maehara, Takanori
Fairness by decision-makers is believed to be auditable by third parties. In this study, we show that this is not always true. We consider the following scenario. Imagine a decision-maker who discloses a subset of his dataset with decisions to make his decisions auditable. If he is corrupt, and he deliberately selects a subset that looks fair even though the overall decision is unfair, can we identify this decision-maker's fraud? We answer this question negatively. We first propose a sampling method that produces a subset whose distribution is biased from the original (to pretend to be fair); however, its differentiation from uniform sampling is difficult. We call such a sampling method as stealthily biased sampling, which is formulated as a Wasserstein distance minimization problem, and is solved through a minimum-cost flow computation. We proved that the stealthily biased sampling minimizes an upper-bound of the indistinguishability. We conducted experiments to see that the stealthily biased sampling is, in fact, difficult to detect.
Convex Hull Approximation of Nearly Optimal Lasso Solutions
Hara, Satoshi, Maehara, Takanori
In an ordinary feature selection procedure, a set of important features is obtained by solving an optimization problem such as the Lasso regression problem, and we expect that the obtained features explain the data well. In this study, instead of the single optimal solution, we consider finding a set of diverse yet nearly optimal solutions. To this end, we formulate the problem as finding a small number of solutions such that the convex hull of these solutions approximates the set of nearly optimal solutions. The proposed algorithm consists of two steps: First, we randomly sample the extreme points of the set of nearly optimal solutions. Then, we select a small number of points using a greedy algorithm. The experimental results indicate that the proposed algorithm can approximate the solution set well. The results also indicate that we can obtain Lasso solutions with a large diversity.
Maximally Invariant Data Perturbation as Explanation
Hara, Satoshi, Ikeno, Kouichi, Soma, Tasuku, Maehara, Takanori
While several feature scoring methods are proposed to explain the output of complex machine learning models, most of them lack formal mathematical definitions. In this study, we propose a novel definition of the feature score using the maximally invariant data perturbation, which is inspired from the idea of adversarial example. In adversarial example, one seeks the smallest data perturbation that changes the model's output. In our proposed approach, we consider the opposite: we seek the maximally invariant data perturbation that does not change the model's output. In this way, we can identify important input features as the ones with small allowable data perturbations. To find the maximally invariant data perturbation, we formulate the problem as linear programming. The experiment on the image classification with VGG16 shows that the proposed method could identify relevant parts of the images effectively.