Hao, Yu
Integrating Retrospective Framework in Multi-Robot Collaboration
Liang, Jiazhao, Huang, Hao, Hao, Yu, Bethala, Geeta Chandra Raju, Wen, Congcong, Rizzo, John-Ross, Fang, Yi
Recent advancements in Large Language Models (LLMs) have demonstrated substantial capabilities in enhancing communication and coordination in multi-robot systems. However, existing methods often struggle to achieve efficient collaboration and decision-making in dynamic and uncertain environments, which are common in real-world multi-robot scenarios. To address these challenges, we propose a novel retrospective actor-critic framework for multi-robot collaboration. This framework integrates two key components: (1) an actor that performs real-time decision-making based on observations and task directives, and (2) a critic that retrospectively evaluates the outcomes to provide feedback for continuous refinement, such that the proposed framework can adapt effectively to dynamic conditions. Extensive experiments conducted in simulated environments validate the effectiveness of our approach, demonstrating significant improvements in task performance and adaptability. This work offers a robust solution to persistent challenges in robotic collaboration.
MdEval: Massively Multilingual Code Debugging
Liu, Shukai, Chai, Linzheng, Yang, Jian, Shi, Jiajun, Zhu, He, Wang, Liran, Jin, Ke, Zhang, Wei, Zhu, Hualei, Guo, Shuyue, Sun, Tao, Liu, Jiaheng, Duan, Yunlong, Hao, Yu, Yang, Liqun, Niu, Guanglin, Zhang, Ge, Li, Zhoujun
Code large language models (LLMs) have made significant progress in code debugging by directly generating the correct code based on the buggy code snippet. Programming benchmarks, typically consisting of buggy code snippet and their associated test cases, are used to assess the debugging capabilities of LLMs. However, many existing benchmarks primarily focus on Python and are often limited in terms of language diversity (e.g., DebugBench and DebugEval). To advance the field of multilingual debugging with LLMs, we propose the first massively multilingual debugging benchmark, which includes 3.6K test samples of 18 programming languages and covers the automated program repair (APR) task, the code review (CR) task, and the bug identification (BI) task. Further, we introduce the debugging instruction corpora MDEVAL-INSTRUCT by injecting bugs into the correct multilingual queries and solutions (xDebugGen). Further, a multilingual debugger xDebugCoder trained on MDEVAL-INSTRUCT as a strong baseline specifically to handle the bugs of a wide range of programming languages (e.g. "Missing Mut" in language Rust and "Misused Macro Definition" in language C). Our extensive experiments on MDEVAL reveal a notable performance gap between open-source models and closed-source LLMs (e.g., GPT and Claude series), highlighting huge room for improvement in multilingual code debugging scenarios.
GAMap: Zero-Shot Object Goal Navigation with Multi-Scale Geometric-Affordance Guidance
Yuan, Shuaihang, Huang, Hao, Hao, Yu, Wen, Congcong, Tzes, Anthony, Fang, Yi
Zero-Shot Object Goal Navigation (ZS-OGN) enables robots or agents to navigate toward objects of unseen categories without object-specific training. Traditional approaches often leverage categorical semantic information for navigation guidance, which struggles when only objects are partially observed or detailed and functional representations of the environment are lacking. To resolve the above two issues, we propose \textit{Geometric-part and Affordance Maps} (GAMap), a novel method that integrates object parts and affordance attributes as navigation guidance. Our method includes a multi-scale scoring approach to capture geometric-part and affordance attributes of objects at different scales. Comprehensive experiments conducted on HM3D and Gibson benchmark datasets demonstrate improvements in Success Rate and Success weighted by Path Length, underscoring the efficacy of our geometric-part and affordance-guided navigation approach in enhancing robot autonomy and versatility, without any additional object-specific training or fine-tuning with the semantics of unseen objects and/or the locomotions of the robot.
Zero-shot Object Navigation with Vision-Language Models Reasoning
Wen, Congcong, Huang, Yisiyuan, Huang, Hao, Huang, Yanjia, Yuan, Shuaihang, Hao, Yu, Lin, Hui, Liu, Yu-Shen, Fang, Yi
Object navigation is crucial for robots, but traditional methods require substantial training data and cannot be generalized to unknown environments. Zero-shot object navigation (ZSON) aims to address this challenge, allowing robots to interact with unknown objects without specific training data. Language-driven zero-shot object navigation (L-ZSON) is an extension of ZSON that incorporates natural language instructions to guide robot navigation and interaction with objects. In this paper, we propose a novel Vision Language model with a Tree-of-thought Network (VLTNet) for L-ZSON. VLTNet comprises four main modules: vision language model understanding, semantic mapping, tree-of-thought reasoning and exploration, and goal identification. Among these modules, Tree-of-Thought (ToT) reasoning and exploration module serves as a core component, innovatively using the ToT reasoning framework for navigation frontier selection during robot exploration. Compared to conventional frontier selection without reasoning, navigation using ToT reasoning involves multi-path reasoning processes and backtracking when necessary, enabling globally informed decision-making with higher accuracy. Experimental results on PASTURE and RoboTHOR benchmarks demonstrate the outstanding performance of our model in LZSON, particularly in scenarios involving complex natural language as target instructions.
The Hitchhiker's Guide to Program Analysis: A Journey with Large Language Models
Li, Haonan, Hao, Yu, Zhai, Yizhuo, Qian, Zhiyun
Static analysis is a widely used technique in software engineering for identifying and mitigating bugs. However, a significant hurdle lies in achieving a delicate balance between precision and scalability. Large Language Models (LLMs) offer a promising alternative, as recent advances demonstrate remarkable capabilities in comprehending, generating, and even debugging code. Yet, the logic of bugs can be complex and require sophisticated reasoning and a large analysis scope spanning multiple functions. Therefore, at this point, LLMs are better used in an assistive role to complement static analysis. In this paper, we take a deep dive into the open space of LLM-assisted static analysis, using use-before-initialization (UBI) bugs as a case study. To this end, we develop LLift, a fully automated framework that interfaces with both a static analysis tool and an LLM. By carefully designing the framework and the prompts, we are able to overcome a number of challenges, including bug-specific modeling, the large problem scope, the non-deterministic nature of LLMs, etc. Tested in a real-world scenario analyzing nearly a thousand potential UBI bugs produced by static analysis, LLift demonstrates a potent capability, showcasing a reasonable precision (50%) and appearing to have no missing bugs. It even identified 13 previously unknown UBI bugs in the Linux kernel. This research paves the way for new opportunities and methodologies in using LLMs for bug discovery in extensive, real-world datasets.
VisPercep: A Vision-Language Approach to Enhance Visual Perception for People with Blindness and Low Vision
Hao, Yu, Yang, Fan, Huang, Hao, Yuan, Shuaihang, Rangan, Sundeep, Rizzo, John-Ross, Wang, Yao, Fang, Yi
People with blindness and low vision (pBLV) encounter substantial challenges when it comes to comprehensive scene recognition and precise object identification in unfamiliar environments. Additionally, due to the vision loss, pBLV have difficulty in accessing and identifying potential tripping hazards on their own. In this paper, we present a pioneering approach that leverages a large vision-language model to enhance visual perception for pBLV, offering detailed and comprehensive descriptions of the surrounding environments and providing warnings about the potential risks. Our method begins by leveraging a large image tagging model (i.e., Recognize Anything (RAM)) to identify all common objects present in the captured images. The recognition results and user query are then integrated into a prompt, tailored specifically for pBLV using prompt engineering. By combining the prompt and input image, a large vision-language model (i.e., InstructBLIP) generates detailed and comprehensive descriptions of the environment and identifies potential risks in the environment by analyzing the environmental objects and scenes, relevant to the prompt. We evaluate our approach through experiments conducted on both indoor and outdoor datasets. Our results demonstrate that our method is able to recognize objects accurately and provide insightful descriptions and analysis of the environment for pBLV.
Inductive Link Prediction for Nodes Having Only Attribute Information
Hao, Yu, Cao, Xin, Fang, Yixiang, Xie, Xike, Wang, Sibo
Predicting the link between two nodes is a fundamental problem for graph data analytics. In attributed graphs, both the structure and attribute information can be utilized for link prediction. Most existing studies focus on transductive link prediction where both nodes are already in the graph. However, many real-world applications require inductive prediction for new nodes having only attribute information. It is more challenging since the new nodes do not have structure information and cannot be seen during the model training. To solve this problem, we propose a model called DEAL, which consists of three components: two node embedding encoders and one alignment mechanism. The two encoders aim to output the attribute-oriented node embedding and the structure-oriented node embedding, and the alignment mechanism aligns the two types of embeddings to build the connections between the attributes and links. Our model DEAL is versatile in the sense that it works for both inductive and transductive link prediction. Extensive experiments on several benchmark datasets show that our proposed model significantly outperforms existing inductive link prediction methods, and also outperforms the state-of-the-art methods on transductive link prediction.
Exploiting Sentence Embedding for Medical Question Answering
Hao, Yu, Liu, Xien, Wu, Ji, Lv, Ping
Despite the great success of word embedding, sentence embedding remains a not-well-solved problem. In this paper, we present a supervised learning framework to exploit sentence embedding for the medical question answering task. The learning framework consists of two main parts: 1) a sentence embedding producing module, and 2) a scoring module. The former is developed with contextual self-attention and multi-scale techniques to encode a sentence into an embedding tensor. This module is shortly called Contextual self-Attention Multi-scale Sentence Embedding (CAMSE). The latter employs two scoring strategies: Semantic Matching Scoring (SMS) and Semantic Association Scoring (SAS). SMS measures similarity while SAS captures association between sentence pairs: a medical question concatenated with a candidate choice, and a piece of corresponding supportive evidence. The proposed framework is examined by two Medical Question Answering(MedicalQA) datasets which are collected from real-world applications: medical exam and clinical diagnosis based on electronic medical records (EMR). The comparison results show that our proposed framework achieved significant improvements compared to competitive baseline approaches. Additionally, a series of controlled experiments are also conducted to illustrate that the multi-scale strategy and the contextual self-attention layer play important roles for producing effective sentence embedding, and the two kinds of scoring strategies are highly complementary to each other for question answering problems.