Goto

Collaborating Authors

 Hao, Han


Non-destructive Degradation Pattern Decoupling for Ultra-early Battery Prototype Verification Using Physics-informed Machine Learning

arXiv.org Artificial Intelligence

Manufacturing complexities and uncertainties have impeded the transition from material prototypes to commercial batteries, making prototype verification critical to quality assessment. A fundamental challenge involves deciphering intertwined chemical processes to characterize degradation patterns and their quantitative relationship with battery performance. Here we show that a physics-informed machine learning approach can quantify and visualize temporally resolved losses concerning thermodynamics and kinetics only using electric signals. Our method enables non-destructive degradation pattern characterization, expediting temperature-adaptable predictions of entire lifetime trajectories, rather than end-of-life points. The verification speed is 25 times faster yet maintaining 95.1% accuracy across temperatures. Such advances facilitate more sustainable management of defective prototypes before massive production, establishing a 19.76 billion USD scrap material recycling market by 2060 in China. By incorporating stepwise charge acceptance as a measure of the initial manufacturing variability of normally identical batteries, we can immediately identify long-term degradation variations. We attribute the predictive power to interpreting machine learning insights using material-agnostic featurization taxonomy for degradation pattern decoupling. Our findings offer new possibilities for dynamic system analysis, such as battery prototype degradation, demonstrating that complex pattern evolutions can be accurately predicted in a non-destructive and data-driven fashion by integrating physics-informed machine learning.


ORGANA: A Robotic Assistant for Automated Chemistry Experimentation and Characterization

arXiv.org Artificial Intelligence

Chemistry experimentation is often resource- and labor-intensive. Despite the many benefits incurred by the integration of advanced and special-purpose lab equipment, many aspects of experimentation are still manually conducted by chemists, for example, polishing an electrode in electrochemistry experiments. Traditional lab automation infrastructure faces challenges when it comes to flexibly adapting to new chemistry experiments. To address this issue, we propose a human-friendly and flexible robotic system, ORGANA, that automates a diverse set of chemistry experiments. It is capable of interacting with chemists in the lab through natural language, using Large Language Models (LLMs). ORGANA keeps scientists informed by providing timely reports that incorporate statistical analyses. Additionally, it actively engages with users when necessary for disambiguation or troubleshooting. ORGANA can reason over user input to derive experiment goals, and plan long sequences of both high-level tasks and low-level robot actions while using feedback from the visual perception of the environment. It also supports scheduling and parallel execution for experiments that require resource allocation and coordination between multiple robots and experiment stations. We show that ORGANA successfully conducts a diverse set of chemistry experiments, including solubility assessment, pH measurement, recrystallization, and electrochemistry experiments. For the latter, we show that ORGANA robustly executes a long-horizon plan, comprising 19 steps executed in parallel, to characterize the electrochemical properties of quinone derivatives, a class of molecules used in rechargeable flow batteries. Our user study indicates that ORGANA significantly improves many aspects of user experience while reducing their physical workload. More details about ORGANA can be found at https://ac-rad.github.io/organa/.


Revealing the structure of language model capabilities

arXiv.org Artificial Intelligence

Building a theoretical understanding of the capabilities of large language models (LLMs) is vital for our ability to predict and explain the behavior of these systems. Here, we investigate the structure of LLM capabilities by extracting latent capabilities from patterns of individual differences across a varied population of LLMs. Using a combination of Bayesian and frequentist factor analysis, we analyzed data from 29 different LLMs across 27 cognitive tasks. We found evidence that LLM capabilities are not monolithic. Instead, they are better explained by three well-delineated factors that represent reasoning, comprehension and core language modeling. Moreover, we found that these three factors can explain a high proportion of the variance in model performance. These results reveal a consistent structure in the capabilities of different LLMs and demonstrate the multifaceted nature of these capabilities. We also found that the three abilities show different relationships to model properties such as model size and instruction tuning. These patterns help refine our understanding of scaling laws and indicate that changes to a model that improve one ability might simultaneously impair others. Based on these findings, we suggest that benchmarks could be streamlined by focusing on tasks that tap into each broad model ability.